DAT410: Group 60 Assignment 4

Cecilia Nyberg Elin Stiebe

Personal number: 990106 Personal number: 000210
Program: MPDSC Program: MPDSC
Hours spent: 28 Hours spent: 28
cecnyb@chalmers.se elinsti@chalmers.se

February 20, 2024

We hereby declare that we have both actively participated in solving every exercise. All solutions

are entirely our own work, without having taken part in other solutions.

1 Reading and reflection

a)
As you can see, automatic translation has been one of the "holy grails” of Al research for several
decades, and attempts at solutions have been proposed using many diverse approaches, based on

radically different computational techniques. Can you think of other AI problems where we can see

a similarly wide range of approaches?

Image recognition is one such field with many approaches. Boesch, 2023 mention four main
strategies of recognizing objects in images. SVMs, Bag of Features Models, Viola-Jones Algorithm,
and deep learning models like CNNs. The most striking similarity between language translation
and image recognition is that both applications try to match one item to another, a word or

sentence in translation, and an object in image recognition.

Second, document classification is another area with a wide range of implementations. The text can
be extracted to features in several ways such as using vectorizers or sentence transformers. Further,
the extracted features can be utilized using a wide range of ML models such as k-clustering or using
random forests. It can also be done using only statistics, such as collapsed Gibbs sampling for

LDA.

Third, generating answers to user questions. This Al problem exists in many domains and levels of

scope. Many companies use it in customer support and a version of this can be seen in ChatGPT.

Implementations can range from rule-based to neural and statistical methods. A similarity for this
is that there has to be both an encoder and decoder part, first the question has to be understood,

and then a answer has to be given.

Lastly a note on another scope of an Al problem with a wide range of solutions. Something that
has gained a lot of interest in recent years is interpretable ML. ML might be used to generate a text
description of a certain outcome or to visualize the result. The method of creating interpretation
needs to be varied depending on the context and the user and thus, there are a large amount of

solutions to creating interpretable systems.

After reviewing all the cases above, translation is still the area with the largest amount of solutions.
This is likely due to the massive interest in translations described in “A history of machine
translation from the Cold War to deep learning”, 2018. Translations are needed within every
business and in people’s everyday lives. It will be interesting to see which ML fields will come close

to the size of ML translation in the future.

b)

Can you think of similarities between some rule-based translation systems and the state-of-the-art

neural systems?

One similarity brought up in “A history of machine translation from the Cold War to deep learning”,
2018 is how there is a middle step of the translation. This middle step is visualized in figure 1. “A
history of machine translation from the Cold War to deep learning”, 2018 writes that both neural
systems and the Interlingua method use one model to encode the first text’s features and then

have another model decode the encoded features independently.

Textin | Model 1 —» Representation | Model 2 —» Textin

language 1 of text language 2

Figure 1: Two models are used to translate between languages.

Another similarity is related to the fields in which the models are used. Both rule-based and neural
methods need to be trained and developed with their context in mind. For example, what format
the output should be in and how the features should be preprocessed to work most efficiently. Both
systems must also consider the changing world they’re part of. Their contexts might change and

their performance will decrease if they do not evolve with it.

Filip Kronström
125230000000052791
good

Finally, both models need to handle ambiguity. Rule-based systems demand rules to handle
ambivalent data. On the other hand, neural networks mitigate ambiguity by generalizing over big
amounts of data. Professionals implementing rule-based systems need to be aware of ambiguities
and actively decide how they should be handled, while neural systems generalize without much

human input.

c)
Can you think of situations where it could be preferable to use an "old-school” rule-based solution

instead of a modern (neural or statistical)?

Neural and statistical solutions are not always a better choice than rule-based ones. First, neural
networks can become extremely big and complex. This is not something that all applications
demand. High complexity should never be introduced if it is unnecessary to do so, thus a rule-based
system might be enough in many cases with a low complexity of the issue at hand. Moreover,
the company implementing the system must consider its capabilities and resources. According
to “Choosing between a rule-based vs. machine learning system | TechTarget”, n.d., a neural or

statistical system may demand a team of data scientists and thus has a higher demand for resources.

Second, the interpretability of rule-based systems is another reason to choose them before neural
or statistical methods. Rule-based methods are easy to decipher and explain to people, including
to those outside of the ML community. Transparency also has several other advantages such as

giving a clear view of biases a system might have.

Third, a rule-based system might be necessary within some languages where there is less data to
build the models on. Both neural and statistical methods demand large amounts of high-quality
data which may not be accessible in all languages. In these instances, a rule-based system would

be preferable.

2 Implementation

Now to the implementation of the IBM model 1. The translation algorithm is built step by step
in each sub-chapter. According to Collins, n.d. IBM model 1 is a statistical method that aims to
calculate the alignment probabilities between words in different languages. The best translation is

found by using the relationship in equation 1. Here, E is an English sentence, and F a French one.
E* = arg max P(E) *« P(F|E) (1)

P(E) is called a language model and P(F|E) is called the translation model and gives the probability
of a French sentence given an English one. Collins, n.d. writes that this can seem to be "backward"

though explains that it is retrieved using the Bayes rule.

a) Warmup

As a warmup, write code to collect statistics about word frequencies in the two languages. Print
the 10 most frequent words in each language. If you’re working with Python, using a Counter
Links to an external site. is probably the easiest solution. Let’s assume that we pick a word
completely randomly from the European parliament proceedings. According to your estimate, what

is the probability that it is speaker? What is the probability that it is zebra?

First, each language’s top 10 most frequently used words are printed. The result can be seen in table
1. There were four files with English translations, they were concatenated and the most common

words in English thus represent the most common words in the union of the four documents.

Rank | English | French | German | Swedish
1 the die att de
2 of der och la
3 to und i et
4 and in det 1
5 in zu som le
6 is den for les
7 that wir av a
8 a daf ar des
9 we ich en que
10 this das vi d

Table 1: Top 10 Most Common Words in Different Languages.

Now, if we pick a word at random, what is the probability of getting "speaker"? What about

"zebra"? A method was created to get a better understanding of the probability of a word overall

or in a specific language. The result for these two words can be seen below.

"Speaker" all languages 2.1349591802274315e-05
"Speaker" in English 4.23327120259538e-05
"Zebra" all languages 0.0
"Zebra" in English 0.0

Now to a very common English word. What is the probability of "The" in all languages, in English
and German? Not so surprisingly, the probability of "The" occurring is highest in English, though
it also occurs in other languages. Looking at the input data for the three languages it becomes
evident that all instances of "the" come from English statements and are not a word included in

the languages.

"The" all languages 0.038048854335616875
"The" in English 0.07541636787896436
"The" in French 4.799909238079862¢-05

"The" in German 2.9430065755175486e-05

"The" in Swedish 3.927198467519887¢-05

b) Language Modelling

We will now define a language model that lets us compute probabilities for individual English
sentences. Implement a bigram language model as described in the lecture, and use it to compute
the probability of a short sentence. What happens if you try to compute the probability of a sentence
that contains a word that did not appear in the training texts? And what happens if your sentence
is very long (e.g. 100 words or more)? Optionally, change your code so that it can handle these

challenges.

A language model refers to P(E) which was discussed in section 2, it is the probability of a sentence
within a certain language. Listing 1 demonstrates the implemented bigram and probability of a
sentence model. The "count bigrams" method shown in listing 1 calculates the probability of a

certain bigram in the same way as shown in equation 2.

count(wy—1, wy,)

(2)

Prrrp (wnfwn—1) = count(wy,—1)
—

The method "probability of sentence" uses bigram to calculate the probability of a certain
sentence. This is done the same way as shown in equation 3. The implemented strategy to
calculate the probability of a sentence uses the Markov assumption, meaning the assumption that

the next word only depends on the current word. In the implementations case <START> is

1

2
3

1

5

denoted as NULL.

P(wy,...,wy) = P(wp|wp—1) - ... P(ws|wy) - P(wy|<START>) (3)

#implement a bigram model
def count_bigrams (language_list):

bigram_counter = Counter ()

for sentence in language_list:
Split sentence into words
words = sentence.split(’)

words = [word.lower () for word in words]

Update Counter with words
bigrams = [(words[i], words[i+1]) for i in range(len(words)-1)]

bigram_counter.update (bigrams)
return bigram_counter

nr such bigrams/ all other bigrams starting with the same word
def probability_of_bigram_in_language (bigram, bigram_counter, word_counter):
return bigram_counter [bigram] / word_counter [bigram[0]] if

word_counter [bigram[0]] > 0 else O

#probability of a sentence is the product of the probabilities of the
bigrams and the probability of the word itself
def probability_of_sentence(sentence, bigram_counter, word_counter):
words = sentence.split()
words = [word.lower () for word in words]
bigrams = [(words[i], words[i+1]) for i in range(len(words) -1)]
probabilities = []
#probabilities.append (probability_of_word(words[0], word_counter))
for bigram in bigrams:
If the word doesn’t exist yet, we assume a very low probability
prob = probability_of_bigram_in_language(bigram, bigram_counter,
word_counter)
#probability_of_word(bigram[1], [word_counter]) is not included

probabilities.append(prob if prob > 0.000000001 else 0.000001)

return np.prod(probabilities)

Listing 1: Implementation of a bigram model.

There are two potential problems when implementing a bigram model. First, if a new word is
introduced the probability of such a sentence is 0. The implementation was therefore revised
to return a very small probability of such a sentence, see line 34 to see the exact code. So if

P(wy|wn—1) = 0, or is very close to zero (< 0.000000001) it is replaced with 0.000001. This change

Filip Kronström
125230000000052791
Good, the actual probability of basically any word is of course non-zero, so this is reasonable

was implemented since there exist many words that were not represented in the training data. The
decision to replace probabilities of 0 with a small probability was made since it could be too harsh
to say that these words can never occur. Table 2 displays some sentences and their probabilities.
One of these, "The speaker is speaking Gobbledygook" has a word that has not occurred in the
training data ("Gobbledygook") and therefore receives a low probability but not 0.

Sentence Language Probability
"The speaker is speaking." English 3.26 x 10718
"The speaker is speaking." German 1.00 x 10718
"Of the speaker" English 5.10 x 10~ 11

"The speaker is speaking Gobbledygook" English 3.26 x 1074
Long sentence in English English 0.0

Table 2: Probabilities of a few sentences.

A second problem that might occur is that there is an issue with long sentences. The longer the
sentence the lower the probability of it. As displayed in table 2, the probability of the last sentence,
which was a very long sentence (> 100 words), is 0. This was not something that was fixed in the
implementation but discussed. Chiusano, 2022 writes about one way to deal with this problem;
to normalize probabilities over sentence length by calculating the perplexity. Additionally, an
end-of-sentence token could be introduced, similar to the NULL token at the beginning of sentences.

This could result in shorter sentences not always having a lower probability than longer ones.

c) Translation Modelling

We will now estimate the parameters of the translation model P(fle). Self-check: if our goal is to
translate from some language into English, why does our conditional probability seem to be written
backward? Why don’t we estimate P(eff) instead? Write code that implements the estimation
algorithm for IBM model 1. Then print, for either Swedish, German, or French, the 10 words that
the English word European is most likely to be translated into, according to your estimate. It can

be interesting to look at this list of 10 words and see how it changes during the EM iterations.

Now to the translation model, P(f|le) which was described in section 2. The reason that the
conditional translation probability seems to be written backward is because of the way that the
most probable translated sentence is calculated. This is shown in equation 4. This is done for two
reasons; only one language is needed as training data, and, there is a division of labor since the

first part P(E) can handle fluency and P(F|E) can take care of the content.

E* = arg mgXP(E|F) = arngaXP(E)P(F|E) (4)

Filip Kronström
125230000000052791
Another solution to handle long or very unlikely sentences being rounded to 0 is to use log-probabilities as this makes it possible to represent much smaller numbers

Filip Kronström
125230000000052791
good

Now to some definitions before the implementation begins. There are two counting variables seen

in equations 5 and 6.
c(e) : Count of occurrences of the word e in the English data. (5)

c(e, f) : Count of every time a specific English and French word are aligned. (6)

Equation 7 is defined by Collins, n.d. as the conditional probability of generating the French word

1

2

f from the English word E.

L=y

(7)

Delta is defined as equation 8 by Collins, n.d. for model 1. Its specific look is different from model

2 due to its prior distribution.

tarn ((fi)¥](e)")

7 .
z:ﬁéotﬂiL(ff|e§)

The full implementation is shown in listing 2.

Give t values only to those g and e which are in the same indexed sentences

Initialize t(fle) randomly
def initialize_parameters(source_list, target_lis
t_parameters = {}
for i in range(len(source_list)):
sentencel = source_list[i].split(’ ?)
sentence2 = target_list[i].split(’>)
for wordl in sentencel:
if wordl not in t_parameters:
t_parameters [wordl] = {}

for word2 in sentence2:

t):

if word2 not in t_parameters[wordl]:

t_parameters [wordl] [word2] =

return t_parameters

#estimation algorithm for IBM model 1

def EM(list_languagel, list_language2):

#initialize t(el|f) uniformly

np.random.rand ()

t = initialize_parameters(list_languagel, list_language2)

print(’initialization done?)

10 iterations of the EM algorithm
for i in range (10):
#set count(elf) to O for all e,f
count = {}
for j in range(len(list_languagel)):
sentencel = list_languagel[j].split(’
sentence2 = list_language2[j].split(’

for wordl in sentencel:

”)
”)

(8)

if wordl not in count:
count [word1] = {}
for word2 in sentence?2:

count [word1l] [word2] = 0

#set count(f) to 0 for all f
total = {}
for sentence2 in list_language2:
for word2 in sentence2.split(’ ’):

total [word2] = 0

#for all sentence pairs (e_s,f_s)
for j in range(len(list_languagel)):
sentencel = list_languagel[j]l.split(’> ?)
sentence2 = list_language2[j].split(’>)
#for all words e in e_s
for wordl in sentencel:
denominator = 0
temp_counts = {}
#for all words f in f_s
for word2 in sentence2:
denominator += t[wordl][word2]

temp_counts [word2] = t[wordil][word2]

if denominator > O:
for word2 in sentence2:
count [word1l] [word2] += temp_counts[word2]/denominator
total [word2] += temp_counts[word2]/denominator
#for all f in F
for j in range(len(list_languagel)):
sentencel = list_languagel[j].split(’> ?)
sentence2 = list_language2[j].split(’ ?)
#for all e in E
for wordl in sentencel:
#t(elf) = count(elf)/total (f)
for word2 in sentence2:
if total[word2] > O:
t[word1l] [word2] = count[wordl][word2]/total [word2]

#print for german the ten words ’european’ is most likely to be
#translated to
word_to_translate = ’european’
if word_to_translate in t:
Sort the target dictionary items based on values in descending order
sorted_target_items = sorted(t[word_to_translate].items(),

key=lambda x: x[1], reverse=True)

Print the top 10 words

print (f"{word_to_translate}: {sorted_target_items[:10]}")
else:

print (f"{word_to_translate} not found in the dictiomnary.")
print(’iteration’, i, ’done’)

return t

Listing 2: Implementation of the Em algorithm.

The implemented EM algorithm was run for 10 iterations. This could have been done differently, for
example by checking for conversion by calculation when the difference between current probabilities
and updated probabilities were small enough. This change would both allow for a higher amount

of iterations if needed but also smaller which would decrease the complexity of the model.

The ten most likely words to translate European to were calculated and printed in each iteration.
These are shown in table 3. It can be seen that the translation finds increasingly accurate words and
becomes increasingly sure of the words throughout the iterations. The correct word "Européischer"
is found already in iteration 2. For this specific word, very few iterations were needed in order
to find the correct translation, though the model builds its confidence in its prediction as the

iterations continue.

10

Iteration Top Translations

1 'zwei-klassen-gesellschaft’, 0.18 | ’fbi’, 0.17 | ’flugsicherung’, 0.16 | ’grenzenlos’, 0.15
| ’csu-europaabgeordneten’, 0.15 | ’aufrechterhalten’, 0.15 | ’funktionsfahigkeit’, 0.14 |
'zentraler’; 0.14 | ’kulturraumes’, 0.13 | "botschaften’, 0.13

2 "européischer’, 0.18 | 'mitteleuropas’, 0.18 | funktionsfdhigkeit’, 0.16 | 'nordeuropéischer’,
0.15 | ’fbi’, 0.15 | zentraler’, 0.14 | ’aufrechterhalten’, 0.14 | 'grenzenlos’, 0.14 | 'rechtshingig’,
0.13 | ’flugsicherung’, 0.13

3 ‘européischer’, 0.40 | ’européisches’, 0.24 | ’européischen’, 0.23 | ’'mitteleuropas’, 0.23 |
'nordeuropéischer’; 0.20 | 'bekennen’, 0.18 | 'union’, 0.18 | ’totale’; 0.17 | ’européische’,
0.17 | ’europawahlen’; 0.17

4 ’européischer’, 0.57 | ’européisches’, 0.44 | ’europdischen’, 0.44 | ’europiische’, 0.44 |
‘mitteleuropas’, 0.27 | ’nordeuropéischer’, 0.25 | ’europawahlen’, 0.25 | ’totale’, 0.25 |
"bekennen’, 0.21 | 'union’, 0.21

5 ’europdische’, 0.68 | ’europiische’, 0.65 | ’europdischen’, 0.62 | ’europdisches’, 0.59 |
‘européisch’, 0.43 | ’europawahlen’, 0.37 | ’totale’, 0.35 | ’'nordeuropéischer’, 0.31 |
‘mitteleuropas’, 0.30 | ’européischsten’; 0.27

6 ‘europdische’, 0.77 | ’européischen’, 0.80 | ’européischer’, 0.79 | ’europiisches’; 0.68
| ’européisch’, 0.50 | ’europawahlen’, 0.40 | ’totale’, 0.37 | ’nordeuropéischer’, 0.32 |
‘mitteleuropas’, 0.30 | ’européischsten’; 0.29

7 ‘européische’, 0.84 | ’européischen’, 0.85 | ’européischer’; 0.82 | ’europiisches’; 0.75
| ’europdisch’, 0.55 | ’europawahlen’, 0.41 | ’totale’, 0.36 | ’nordeuropéischer’, 0.32 |
"européischsten’, 0.30 | 'mitteleuropas’, 0.30

8 ‘européische’, 0.91 | ’européischen’, 0.88 | ’europiischer’, 0.83 | ’europiisches’, 0.77
| ’europdisch’, 0.57 | ’europawahlen’, 0.42 | ’totale’, 0.35 | 'nordeuropéischer’, 0.33 |
‘européischsten’; 0.31 | ’¢5-0121°, 0.30

9 ‘européische’, 0.93 | ’européischen’, 0.90 | ’européischer’; 0.84 | ’européisches’, 0.78
| ’europdisch’, 0.59 | ’europawahlen’; 0.42 | ’totale’, 0.33 | ’'nordeuropéiischer’, 0.33 |
‘unionsbiirgerschaft’, 0.33 | ’¢5-01217, 0.32

10 ’europdische’, 0.93 | ’europdischen’, 0.90 | ’europiischer’, 0.84 | ’européisches’, 0.77

| ’europdisch’, 0.59 | ’europawahlen’; 0.42 | ’totale’, 0.33 | ’'nordeuropéischer’, 0.33 |

"européischsten’; 0.31 | 'unionsbiirgerschaft’, 0.31

Table 3: Top 10 most probable translations of the English word "European" to the German word.

11

d) Decoding

Define and implement an algorithm to find a translation, given a sentence in the source language.
That is, you should try to find E* = argmazE P(E[F) In plain words, for a given source-language
sentence F, we want to find the English-language sentence E that has the highest probability
according to the probabilistic model we have discussed. Using machine translation jargon, we call
this algorithm the "decoder." In practice, you can’t solve this problem ezxactly and you’ll have to
come up with some sort of approrimation. Exemplify how this algorithm works by showing the result
of applying your translation system to a short sentence from the source language. As mentioned,
it is expected that you will need to introduce a number of assumptions to make this at all feasible.
Please explain all simplifying assumptions that you have made, and the impact you think that they
will have on the quality of translations. But why is it an algorithmically difficult problem to find
the English sentence that has the highest probability in our model?

The last part of the implementation is to find E* defined in equation 1 in section 2 and thus end
up with the translated sentence. A few assumptions and simplifications were made to calculate
E*. First, because of the Markov assumptions made in P(E) and P(F|E), no consideration was
given to words after every bigram in the sentence. This is a big downside when translating since

words at the end of a sentence could have provided important context.

Additionally, finding the highest probable sentence P(E) is algorithmically difficult since the search
space becomes extremely large. It is not possible to search through all possibilities. Therefore, a
simplification was made by only using ten potential translation words, given by the top ten words
with the highest P(F|E). The translation method works by multiplying the probabilities for these
ten words with the probability for the already translated part of the sentence having this potential
word last. This could exclude some alternative translations where the probability of the sentence
is so high that it would outweigh a low translation probability. The code on rows 10-23 in listing

3 demonstrates how the simplification was implemented.

Even though the P(E) was only used for the top ten translation words, it still had a large impact
on the result. No penalization was given for repetition or usage of non-informative words, which
was reflected in the results. The P(E) is usually higher for non-informative common words such
as 'the’, 'and’ or ’of’ since these words occur many times in the training data and therefore also in
many bigrams and in many combinations of language sentences. Some kind of penalization could
have been given if a suggested word had already occurred in the so-far translated sentence since

such repetitions are unlikely to the extent they occurred.

Another way to deal with this problem could have been to give the P(E) part of E* less impact
than the P(F|E). When translating by only using the P(F|E) and not P(E), the translations turned

out much better. This indicates that the two factors may not have equal weights. The sentence

12

Filip Kronström
125230000000052791
I guess you also assume the same number of words and the same word order

1

2

probability P(E) could be normalized in some way so that the values don’t differ as much.

Another important downside is that the translator can only handle words that were present in
the training data. This could have been handled by for example keeping the word that is not
recognized as it is, which some translators do. Another idea could be to split the word and
hopefully, parts of the word could have been present in the training data. This could be useful for
e.g. verb conjugations, but could also lead to incorrect translations if the subparts of a word do

not correlate with the meaning of the whole word.

The full implementation is shown in listing 3.

#translation of a sentence is calculated by product of sentence
#probability p(e) and the translation probability p(fle)

def translate_sentence(sentence, t, word_counter_bigrams, word_counter):

words = sentence.split(’)
words = [word.lower () for word in words]
translated_sentence = []

translated_sentence.append (’NULL’)

for word in words:
probabilities = []
top_ten_translations = sorted(
[(key, inner_dict[word]) for key, inner_dict in t.items() if word
in inner_dict],
key=lambda x: x[1], # Sorting key based on the value
#(second element of the tuple)
reverse=True

)[:10] # Selecting the top ten

for wordl, t_value in top_ten_translations:
temp_sentence = ~’ ’.join(translated_sentence)
probabilities.append(probability_of_sentence(temp_sentence + ’

+ wordl, word_counter_bigrams, word_counter)*t_value)

translated_sentence.append(top_ten_translations

[np.argmax (probabilities)][0])
return translated_sentence[1:]

Listing 3: Implementation of the EM algorithm.

The translator was used for two different sentences in English and the result in German is shown

in table 4. The result is not completely incorrect but it is not completely correct either.

To see if the result would be different if the sentence probabilities were more similar, the method

for calculating sentence probabilities was slightly updated. The line:

13

Source Language (English) Target Language (German)

I am a European speaking here | ich bin eine européische werte die

A cat was here today and spoke | eine wirtschaft und hier heute

und von den von so

about some things

Table 4: Translated sentences from English to German using the implementation in listing 3.

1 probabilities.append(prob if prob > 0.000000001 else 0.000001)

was changed to:

1 probabilities.append(prob if prob > 0.1 else 0.1)

The new results are presented in table 5. The translations are better in some ways, but 'T am’
which was correctly translated in the first example is now incorrectly translated to ’ich ich’. The
second sentence is much better in the second example though. This highlights the importance of
the sentence probability since that was probably much higher for ’ich bin’ than for ’ich ich’. But
also demonstrates the importance of the translation probability since that generated the correct

translation of more words, like translating ’about some things’ to ’iiber einige dinge’.

Source Language (English)

Target Language (German)

I am a European speaking here

ich ich eine européischen spreche

hier

A cat was here today and spoke

about some things

eine ausgeht wurde hier heute

und gesprochen iiber einige dinge

Table 5: Translated sentences from English to German using the described adaptation.

14

Filip Kronström
125230000000052791
Nice that you included a sentence you wouldn't expect to hear in the european parlament as well

3 Discussion

Section 3 discussed how to evaluate ML translations. The next section touches on biases in
Google Translate’s statistical algorithm and lastly section 3 discusses a faulty translation by Google

Translate and discusses some reasons why the specific result was yielded.

a)
Propose a number of different evaluation protocols for machine translation systems and discuss
their advantages and disadvantages. What does it mean for a translation to be "good"? Minimally,

you should think of one manual and one automatic procedure. (The point here is not that you

should search the web but that you should try to come up with your own ideas.)

First, what is a good translation? According to Popplewell, 2023 at "Institute of Translation and
Interpreting" a good translation should cover six elements. First, fitness of purpose, the translated
text should fulfill the same objective that the original text does. Second, linguistic accuracy,
the translation must convey the same nuances as the original text. Third, ezcellent writing, the
translation should be good text in its own right. Fourth, cultural awareness, the translation needs
to represent the cultural reality of the target language’s region. Fifth, subject expertise, expert
knowledge needs to be conveyed convincingly. Sixth, quality assurance, the translation needs to be

quality-checked.

The points above elude to the fact that there are many requirements a good translation needs to
reach. Popplewell, 2023 talks about human translation and thus talks about the importance of
education and knowledge of the translator. Humans need to encode rules or objectives in the ML

translation model such as the six above to give satisfactory translations. This can be complex.

Just through reasoning, the two most important aspects of a good translation could be that it
semantically conveys the same information as the source text, and secondly, that the translated
text is linguistically accurate, i.e., using proper grammar and language conventions.

Manual Evaluation

One manual procedure would be to have educated translators to evaluate the accuracy of translations.
A very specific method would be to measure the number of changes a professional translator would

make to a certain translation. The maximum number of points would be,
max_score = number of words+ 1+ 6 (9)

A point would be deducted for every changed word and the added point would be subtracted if

the grammar of the order of the words were to change. The last +6 points relate to the six points

15

indicating if a translation is good or not. A point should be deducted for every objective that the

ML model’s translation fails to reach.

Below is an example where the professional made one change in a 4-worded sentence. The score is
thus 10/11 since one change was made. The additional points besides the number of letters were

described above. The score would become 0 if the translator changed everything in the translation.

Model output: He is a doctor.
Translator changed to: She is a doctor.

Score: 10/11

Another approach could be to have people knowing the source language and target language grade
the translations both regarding the fluency of the text and the content. Whether these two aspects
would be given equal importance depends on the situation. In some cases, the it is more important
to convey the same message than having fluency in the language, and in some cases it might even
be the other way around. For example when reading a novel, some people might be more bothered
with incorrect language than if the information differed slightly from another language. A downside
with this approach is the subjectivity when grading texts if there is not a very detailed protocol

to follow, which can be difficult to create.

An advantage of the manual proposal is the expert knowledge in the loop. The biggest drawback

is the demand for manpower and resources it would take. This evaluation strategy scales badly.

Automatic Evaluation

An automatic way of evaluating would be to compare the translated sentence to a big "bag of
sentences". If the translated sentence exists among the bag of sentences then the sentence is
assessed to be accurate. The bag of sentences could be built by loading big amounts of literature
or other data that the creator of the model trusts are written in the correct language. Data sources

such as twitter should be avoided. An example is inserted below
Translation: I good feel

Bag of sentences:

I am happy
My name is

I feel good

The translation would be labeled as a bad translation as it does not exist in the bag of sentences. A

big drawback of this method is that it demands HUGE amounts of data to cover the full language.

16

Moreover, it labels the translation as binary as either "good" or "bad". In reality, there are more
nuances to whether a translation is accurate or not. Another drawback is that it does not consider
if the sentence is translated correctly just if the translation exists in the language. The biggest pro

of this method is that it most probably would get the grammar correct.

Furthermore, an idea could also be to compare translations with already translated texts by
calculating different scores. For example, word usage similarities like the F1 score, which calculates
the occurrences of the exact same words in two texts, could be used together with a semantic
similarity score. That way, both the phrasing and the meaning of the translated text would be
taken into consideration. A downside to this is the need for translated texts as training data. It
could potentially also be done by comparing translations given my the model with translations given
by a bigger and already evaluated translation model. A downside to this is that the translation

model used for comparisons may also make errors.

b)

The following example shows several sentences automatically translated from Estonian into English.
In Estonian, ta means either "he” or "she", depending on whom we’re talking about. Please
comment on the translated sentences: what do you think are the technical reasons we see this

effect? Do you consider this to be a bug or a feature?

According to “A history of machine translation from the Cold War to deep learning”, 2018 google
has used "phrase-based statistical machine translation" since 2016 which has increased its accuracy
though, the use of statistical ML translation opens up the system to massive amounts of human
biases. The reason that the translation becomes "he" with professions traditionally associated with
men and "she" with those often associated with women is probably directly due to the training
data. This fact indicates that texts about doctors and computer programmers are more likely to

refer to men and texts about babysitters to women.

In addition “A history of machine translation from the Cold War to deep learning”, 2018 writes
that Google has used a crowd-sourcing system where users get several suggestions on what the
translation should be. The user then gets to choose what translation is most accurate. People
using Google Translate have probably thought that the translation from "ta" to "him" is most
accurate in typically male-dominated industries and to "her" in women-dominated industries. This

ability for human selection could have further increased the system’s biases.

A bug would indicate that the system is predicting something inaccurate which seems to be the
case with the prediction that "ta" is translated to him in the case of doctors. Estonia has a very
high percentage of female doctors reported to be 72.5% in 2023 according to Staff, 2023. Thus

"ta" should not be translated to "him" if the goal is to predict the most accurate pronoun of a

17

doctor. This effect is thus a bug in some cases where the input data and society’s stereotypes are
out of line with reality. Another interesting thing to discuss would be how these biased systems
affect society’s biases. What effect does Google Translate have on people as it confirms their biased

opinions? What would happen if their opinions were challenged or corrected instead?

c)

The first two examples are translated correctly into Swedish, while the third translation is nonsensical:
the automatic translation system seems to have come up with some sort of mix between the two

Swedish translations of the word bat (the first half of the word Fladdertriet comes from the flying

animal, and the second from the baseball or cricket bat).

Why do you think the translation system has been able to select the correct translation of bat in the
first two cases? What might be the reason that it has invented a new nonsense word in the third
case? [NOTE: this example is not reproducible as of 2024 since Google Translate has been updated

since the example was created.]

Context plays an important role in the world of statistical models consequently the first two
sentences are probably translated correctly due to their homogenous context around the word
"bat". The first sentence is connected with a sport. It is a common context for the ’slagtrad’
meaning of the word since the main purpose of a ’slagtrd’ is to hit balls. Therefore, the translation
model probably has encountered the usage of the word bat in this context in the training data and
therefore handles it in the right way. The same thing goes for the next sentence. Eating insects
is clearly associated with the animal bat and could also have been encountered during training.
However, the context of the third sentence can be harder to understand. The model probably
connects ’lives’ with the animal, whereof 'fladder’, and then forest with 'trd’, and hence creates
the word ’fladdertréet’. It could be because this specific context did not occur in the training data

and therefore the model does not know how to handle it.

Another reason why this might be the case is because of how the Google translator may deal with
rare words. “A history of machine translation from the Cold War to deep learning”, 2018 explains
that if a word is not included in the lexicon, it is broken down into smaller pieces and these pieces
are translated instead. It is possible that the Google translator looked at translations in word
pieces for the first two sentences as well, but in these contexts the most probable word following

‘slag’ and ’fladder’ was correct.

18

References

Boesch, G. (2023, December). Image recognition: The basics and use cases(2024 guide). Retrieved
February 18, 2024, from https://viso.ai/computer-vision/image-recognition/

Chiusano, F. (2022). Two minutes nlp — perplexity explained with simple probabilities. NLPlanet.
https: / /medium . com / nlplanet / two- minutes- nlp - perplexity - explained - with - simple -
probabilities-6cdc46884584

Choosing between a rule-based vs. machine learning system | TechTarget. (n.d.). Retrieved February
18, 2024, from https://www.techtarget.com /searchenterpriseai/feature /How-to-choose-
between-a-rules-based-vs-machine-learning-system

Collins, M. (n.d.). Statistical machine translation: Ibm models 1 and 2. http://www.cs.columbia.
edu/ “mcollins/courses/nlp2011 /notes/ibm12.pdf

A history of machine translation from the Cold War to deep learning. (2018, March). Retrieved
February 18, 2024, from https://www.freecodecamp.org/news /a- history- of- machine-
translation- from-the-cold-war-to-deep-learning-f1d335ce8b5/

Popplewell, M. (2023, September). 6 ingredients of a good translation. Retrieved February 20,
2024, from https://www.iti.org.uk /resource/6-ingredients-of-a-good-translation.html

Staff, G. (2023, May). Gender bias in medicine: Which countries have the most female doctors.
Retrieved February 18, 2024, from https://geographical.co.uk /culture /countries- with-

the-most-female-doctors

19

