
DAT410: Assignment 2

Group 60: Cecilia Nyberg, Elin Stiebe

January 2024

1 Task 1: Reading and reflection

Read the papers "The Netflix Prize Download The Netflix Prize" and "Lessons from the Netflix

Prize Challenge" and write a half-page summary of your takeaways from them. Pick two design

features (e.g., regarding data, models, algorithms) that characterize the task and the solution in the

papers and discuss how they may differ in another application of recommendation systems.

Both Bell and Koren, 2007 and Bennett and Lanning, 2007 describe the competition Netflix started

within the ML community which was challenged to improve its recommendation system. The

first mentioned article more concretely writes that they urged the community to improve their

recommendation algorithm by reducing their RMSE by 10%. After creating such an algorithm

the programmer or company was supposed to post the code online. The winner would get a

big cash prize. As the prize suggests, the articles further describe just how important Netflix’s

recommendation algorithm is for their business. Users who get recommended movies in line with

their tastes tend to stay on the site. As mentioned in Bennett and Lanning, 2007, "If subscribers

fail to find movies that interest and engage them, they tend to abandon the service.".

A specific feature of the Netflix recommendation system is the chosen data. The data consists of

100 million reviews. The prize dataset was created by randomly choosing subscribers with no less

than 20 ratings. One challenge with the data is the large number of users who have never rated

any movie. The article also mentions the importance of the models’ data, the models don’t only

need information about each movie’s ratings but also what movie each user rated. Another aspect

and feature of the data that the Netflix recommendation algorithm takes into account is that it

is best to be kept as a whole. Deleting a certain row would result in deleting the possibility to

recommend a user a movie and thus to a direct financial loss. This makes the problem even more

complex. In other problems, some data points might be deleted to make the problem easier to

solve. Every situation is unique in its own way!

Another specific feature is regarding the model. According to Bell and Koren, 2007, all models

1

which rely on complete data had to be abandoned when they developed the recommendation

system. The winner of the challenge was AT&T. According to Bell and Koren, 2007, they

relied on ensembles with models that were supposed to complete each other’s weaknesses. The

takeaway of the winner’s strategy is to always consider what data to take into account, allow for

models that fit the data, and use them in ensembles when needed to minimize the risk of errors.

For a smaller-scaled recommendation system, using an ensemble could instead make the system

worse since it introduces unnecessary complexity, making the system harder to manage and more

time-consuming to run.

2 Task 2: Implementation

After reading the Netflix articles one could want to consider the following for recommending a

movie to a user:

• Ratings for a specific movie.

• The genre preferences of the user compared to the movie.

• How similar users have rated other movies.

The algorithm proposed can be seen in the appendix and only utilizes points one and two in the

list above. The idea is to recommend movies based on what movies each person has rated and

what genres that movie has. The algorithm takes one user at a time and calculates the top three

genres for that person. This is done by summarizing the ratings for each genre and choosing the

three genres with the highest value. Then five movies are selected that have all these three genres

and that the user has not watched already. Below are the recommendations for Vincent, Edgar,

Addilyn, Marlee, and Javier.

• For Vincent, we recommend: Supercross, Crouching Tiger, Hidden Dragon, Sands of Iwo

Jima, El Mariachi, Kites, since Vincent likes: action, drama, romance

• Edgar, we recommend: Ghost, El Mariachi, Punch-Drunk Love, Match Point, Out of Sight,

since Edgar likes: thriller, romance, drama

• For Addilyn, we recommend: Novocaine, Punch-Drunk Love, Made, Wasabi, Chill Factor,

since Addilyn likes: thriller, comedy, drama

• For Marlee, we recommend: Novocaine, Punch-Drunk Love, Made, Wasabi, Chill Factor,

since Marlee likes: comedy, thriller, drama

• For Javier, we recommend: Beverly Hills Chihuahua, The Magic Sword: Quest for Camelot,

Growing Up Smith, Hannah Montana: The Movie, Mrs. Doubtfire, since Javier likes: family,

2

Lena Stempfle
125230000000031910
Which algorithm did you use?

drama, comedy

There are some strengths and weaknesses with the chosen algorithm. One strength is that a

user probably likes movies with their top three genres since they have a high sum of rankings for

those genes. It either means that the user watches a lot of movies within these genres or ranks

movies within these genres highly. One weakness is that all other preferences besides genres are

disregarded. For example, if a user prefers a certain actor. Another weakness is that the algorithm

only accounts for the ratings, not the watched movies. Ratings might reflect what movies the user

wants to like but not actually what the user usually chooses to watch.

Further, the algorithm considered two lower ratings within the same genre as equivalent to one

higher rating within another genre. For example, one 5-star rating within one genre is equivalent

to five 1-star ratings within another genre. This could be both a pro or con depending on the goal

of the company and algorithm. Is the goal to have customers viewing many movies of a few highly

rated ones? One last con is that comparing users with other similar users is not utilized. This

could be valuable insight and could be used for example by choosing a high-rated movie from a

similar user that the current user hasn’t seen but might like.

3 Task 3: Discussion

Assessing the quality of a recommendation system before deploying it to users is difficult. Why?

In a few paragraphs, discuss fundamental challenges in the evaluation of recommendation systems

and how they may lead to problems in practice.

It is hard to assess the quality of a recommendation system before deployment since the quality is

most often measured in terms of the error between the prediction and the actual score(in the case

of Netflix, the predicted rating and the actual rating). This can be done with a test set of data

before deployment, though these types of recommendation systems are inherently time-sensitive.

To improve on the recommendation system one needs to rely on input from the users.

Another challenge is the feedback loop. Sometimes it takes a long time to see the effects of the

implemented algorithm. This also depends on the objective of the recommendation algorithm. It

might also be a challenge to distinguish the exact contribution of the algorithm in relation to other

business decisions made during the same time.

An additional challenge is that if the recommendation system is based on ratings, it might not

reflect what the user chooses to watch and the effect might therefore be different than expected.

For example, someone might rate documentaries highly because they want to be a person who

likes documentaries, but in reality, they usually pick a romantic comedy. Another challenge is

keeping the quality of the recommendation algorithm high for those objects with very few amounts

3

of comments. The more ratings the more input to work with and vice versa. For example, the

majority of movies on Netflix have very few ratings.

It can also be difficult to measure how well the goal has been reached for some objectives. For

example, if the objective is to increase user interaction, it can be hard to determine if the user just

has a movie playing in the background or actively watches the movie.

References

Bell, R., & Koren, Y. (2007). Lessons from the netflix prize challenge. SIGKDD Explorations, 9,

75–79. https://doi.org/10.1145/1345448.1345465

Bennett, J., & Lanning, S. (2007). The netflix prize. https://api.semanticscholar.org/CorpusID:

9528522

A Code for task 2

import pandas as pd

import numpy as np

#Reding the data

movies_df = pd . read_csv ("movie_genres . csv ")

users_df = pd . read_csv (" user_reviews . csv ")

def set_up_dataframes (users_df , movies_df) :

Convert DataFrames to NumPy arrays and drop unwanted columns

genres_matrix = movies_df . drop ([movies_df . columns [0] ,

movies_df . columns [1]] , a x i s = 1) . to_numpy ()

#want to drop the index ing column and the user column to only have the

#movies wi th r a t i n g s

user_matrix = users_df . drop ([users_df . columns [0] , users_df . columns [1]] ,

a x i s =1).to_numpy ()

#matrix mu l t i p l i c a t i o n o f the genres and movie ra t ing s ,

t h i s w i l l g i v e us a matrix o f user s ’ r a t i n g s f o r each genre

#I f row 1 has a 3 in column 1 , t ha t means t ha t user 1 has a t o t a l

ra t i n g o f 3 f o r movies o f genre 1

return np . matmul (user_matrix , genres_matrix)

4

#he l p e r func t i on to ge t the recommended movie

def get_recommended_movie (user_ind , movie_indexes , user_movies) :

recommend_movies = []

for inx in movie_indexes :

i f user_movies . i l o c [user_ind , inx] == 0 . 0 :

recommend_movies . append (movies_df . l o c [inx , "movie_t i t l e "])

i f len (recommend_movies) == 5 :

return recommend_movies

return "No␣movie␣ found"

def recommend_movies (users , users_df , movies_df) :

#This g i v e s a l i s t o f movies wi th r a t i n g s f o r the chosen users ,

to use l a t e r to check i f a movie has been ra ted or not

user_movies = users_df . l o c [users_df ["User"] . i s i n (u s e r s)]

user_movies = user_movies . drop (columns=["User" , "Unnamed : ␣0"])

users_rated_genres = set_up_dataframes (users_df , movies_df)

fave_genres = []

movies_to_recommend = []

for user_index in range (len (u s e r s)) :

#take out the row of the user at user_index

rated_genres = users_rated_genres [user_index]

#This appends an array o f the top th r ee genres f o r user at user_index

fave_genres . append (np . a r gpa r t i t i o n (rated_genres , −3)[−3:])

#This g e t s the indexes o f a l l movies t ha t have a l l t h r e e o f the

user ’ s f a v o r i t e genres

idx_of_movies_with_genres = movies_df . l o c [

(movies_df . i l o c [: , fave_genres [user_index] [0]+ 2] != 0)

& (movies_df . i l o c [: , fave_genres [user_index] [1]+ 2] != 0)

& (movies_df . i l o c [: , fave_genres [user_index] [2]+ 2] != 0)] . index

5

#t h i s appends f i v e recommended movies f o r the user at user_index

movies_to_recommend . append (get_recommended_movie (user_index ,

idx_of_movies_with_genres , user_movies))

return movies_to_recommend , fave_genres

#the users to recommend movies to

use r s = ["Vincent " , "Edgar" , "Addilyn" , "Marlee" , " Jav i e r "]

movies_to_recommend , fave_genres = recommend_movies (users , users_df , movies_df)

#pr in t the r e s u l t s

for i in range (len (u s e r s)) :

l iked_genres_str = ’ , ␣ ’ . j o i n (movies_df . columns [2 + index]

for index in fave_genres [i])

l iked_movies_str = ’ , ␣ ’ . j o i n (movies_to_recommend [i])

print (f "For␣{ us e r s [i] } , ␣we␣recommend :

␣␣␣␣\n␣{ l iked_movies_str }␣\n␣ Since ␣{ us e r s [i] } ␣ l i k e s : ␣{ l iked_genres_str }␣\n")

6

