CHALMERS UNIVERSITY OF TECHNOLOGY

PROJECT IN TMA947 - NONLINEAR OPTIMIZATION

Planning of Electricity Production and Transmission

Authors:
NYBERG Cecilia
cecnyb@chalmers.se

SJOGREN Frida
sjogrenf@chalmers.se

STIEBE Elin
elinsti@chalmers.se

1 november 2023

Abstract

This report aims to plan the production and transmission of electric power within a network com-
prising 11 nodes, each containing energy-producing generators, energy-consuming customers, or
both. The primary objective is to develop a nonlinear optimization framework to minimize total
energy production costs across the network while ensuring that all power demands are met. To
achieve this, power must be routed through edges connecting nodes, with varying energy losses
along these edges, and the additional constraint that no generator can exceed its maximum
capacity. Two types of power can be generated by the generators, active and reactive. The de-
mand is only for active power, but the reactive has to be considered when balancing the power
flow in the network. The findings reveal that the lowest possible cost to satisfy the network’s
power demand is 186.29 SEK. Given the non-convex nature of the problem, it is not possible
to guarantee that this result represents a global optimum but only a local one.

The model shows that five generators have reached their maximum capacity within this solution.
By increasing the capacity of one of these generators, a lower optimal solution may be reached.

1 Mathematical Formulation

In this assignment, all problems relate back to minimizing the costs of producing energy using
planable energy sources over a network. The given network can be seen in figure 1. The intuition
of the 11 nodes are different cities containing generators and, or, consumers. The generators
must collectively satisfy the demand from the consumers. There are two types of power; active
and reactive. The produced active power can be utilized by consumers while reactive power can
be seen as a by-product that can either be generated or absorbed by the generators within the
system, to an amplitude of 0.3% of each generator’s maximum capacity. It is essential for the
energy system, yet it goes unnoticed in the form of cost and usage from consumers. With these
complicating factors, the question is how to meet the consumer’s needs as cost-effectively as
possible.

Figur 1: Map of the network consisting of 11 nodes which all contain generators and, or consu-
mers.

1.1 Properties of the Network

This section presents the given data for the network. Table 1 presents data related to the 9
generators and table 2 presents data related to the 7 consumers.

Generator | Location node | Maximum capacity [pu] | Production cost [SEK/pu]
Gl 2 0.02 175
G2 2 0.15 100
G3 2 0.08 150
G4 3 0.07 150
G5 4 0.04 300
G6 5 0.17 350
G7 7 0.17 400
G8 9 0.26 300
G9 9 0.05 200

Tabell 1: Parameters related to the generators

Consumer | Location node | Demand active power [pul]
C1 1 0.10
C2 4 0.19
C3 6 0.11
C4 8 0.09
C5 9 0.21
C6 10 0.05
C7 11 0.04

Tabell 2: Parameters related to the consumers

For two connected nodes k and 1 in the given network, the amount of active power that flows
from node k to node 1 is described by the py; formula and the reactive power that flows from
node k to node 1 is described by the ¢i; formula, both presented below:

Pkt = Vigke — VkVegke co8(0) — 07) — vpvgbge sin(Oy, — 60y)
Gkt = —Vibre + vEvebre cos(0), — 0g) — vvegre sin(Oy, — 6;)

The parameters bg; and gg; describe the edges between the nodes of the network. The values of
the parameters are presented in tables 3 and 4.

Edge(k,])

con 12) | (1) | @3) | 21| 64 | 69 | @5 | 6
bri -20.1 | =223 | —-16.8 | —17.2 | —11.7 | —19.4 | —10.8 | —12.3
9kl 4.12 5.67 241 2.78 1.98 3.23 1.59 1.71

Tabell 3: byandgy; values

Edge(k,1)

oot 5.8) | 6.7 | (7.8 | 7.9 | 89 | ©9.10)] (10,11)
i -92 | =139 | =87 | -11.3 | —14.7 | —13.5 —26.7
9kl 1.26 1.11 1.32 2.01 241 2.14 5.06

Tabell 4: by;andgy; values

1.2 Definition of Parameters and Variables

The given parameters for the problem are presented in table 5. Variables used to solve the
nonlinear programming problem are defined and stated in table 6.

Parameter | Definition Unit
C ={¢} | energy production cost for generator i i€[1,9] | SEK/pu
dy, active power demand in node k ke [1,11] pu
emax; maximum capacity for generator i i€[1,9] pu

il g coefficient for the edge between node k and node 1. | k0 € [1,11] | Unitless
0 if there is no edge.
br b coefficient for the edge between node k and node 1. | k£, € [1,11] | Unitless
0 if there is no edge. k,l
A = {al} | a is a vector with 9 elements describing the existence | k € [1,11] | Unitless
of generators in node k. For example, generator 1,2,3
lies in node 2, and then the first, second, and third
element in ao is 1; else it’s 0’s.
Tabell 5: Parameters
Variable Definition Unit
E = {e} amount of produced active energy at generator i i€[1,9] pu
R = {r;} amount of reactive power at generator i i€ [1,9] pu
Vg voltage in node k ke [1,9] vu
0% voltage phase angle in node k k€ [1,11] | radians
Dkl amount of active energy flowing between node k and 1 | k,l € [1,11] pu

Tabell 6: Defined variables

1.3 Nonlinear Programming Problem

The problem is to minimize the cost of production without violating the constraints of the
systems. A more in-depth description of each constraint follows after the nonlinear programming
system. The objective function (1), also called the cost function, is obtained by summarizing
the amount of generated power at each generator multiplied by its associated cost of production.

minimize
9
Z Ci€;. (1)
=1

subject to

dk:a{E—ipkl, k=1,...,11 (2)

=1

11
O=atR—=> qu, k=1,...,11 (3)

=1
Phi = Vigke — UkVegie 08(0r — 0¢) — vpvebye sin(6y, — 0) (4)
Qe = —Vibgy + vRVbge cos (0 — By) — Vpvegre Sin (6 — Oy) (5)
0 <e; <emax; (6)
—0.003 - emax; < r; < 0.003 - emax; (7)
0.98 < vy, < 1.02 (8)
— <O, <m 9)

The first constraint (2) ensures that the flow of active power is balanced and that the power
demand in each node is satisfied. The demand in a node is set to be equal to the generated
power in each generator in that node plus the sum of the power flow from each edge going out
of that node. If power is going into the node, it is still viewed as power going out but with a
negative sign. The second constraint (3) handles the reactive power by making sure that the
amount of reactive power that is produced or generated in all generators in a node minus the
sum of the flow of reactive power in connected edges to that node is zero. This makes sure that
the reactive power throughout the network is balanced. The third (4) and fourth (5) constraints
are equations for the flow of active power (4) and reactive power (4) in the edge between node k
and node 1. These equations are used in constraint (2) and (3). Constraints (4) and (5) share the
variables v and 6 and therefore create a connection between the amount of active and reactive
power in the network.

Variable constraint (6) ensures that the produced active power in each generator is greater
than or equal to zero since it is not possible to produce negative active power in this problem.
The upper bound for the produced active power at each generator is given for the problem,
corresponding to its maximum capacity. For the generated reactive power at each generator it
is given in the problem, that each generator can either generate or absorb reactive power to
an amplitude of 0.3% of the generator’s maximum capacity (7). Constraints on the variables
voltage amplitude (8) and voltage angle (9) are also given for the problem.

2 Results and Analysis

By solving the nonlinear programming problem several results are given. Firstly, the minimum
value of the objective function can be seen in table 7.

Minimal Cost
186.29

Tabell 7: Minimal cost in SEK to satisfy the demand in the network.

As presented in the generator data, each generator has a maximum capacity and power pro-
duction cost. They therefore contribute different amounts of active and reactive power to the
network to satisfy the demand of the consumers. Table 8 demonstrates the amount of active
power that each generator provides to satisfy the demand.

Generator | Active Power Produced
1 0.0049
0.15
0.080
0.070
0.040
0.14
0.0031
0.25
0.050

O[O0 || U = | W N

Tabell 8: Active power produced by each generator in pu.

As for the reactive power, each generator produces or absorbs the amount shown in table 9.
A negative sign indicates that the power is absorbed, while a positive sign indicates produced
power. In this problem, all generators produced reactive power and hence the signs are positive.

Generator | Reactive Power Produced
1 6.0e-5

0.00045

0.00024

0.00021

0.00012

0.00051

0.00051

0.00078

0.00015

OO0 || T x| WD

Tabell 9: Reactive power produced by each generator.

The active and reactive power that flows in the edges depends on the voltage amplitudes and
phase angles in the nodes. The specific relation between these two variables and power flow can
be seen in constraints (4) and (5) of the nonlinear programming system. The result for voltage

amplitudes and phase angles can be seen in table 10

Node | Voltage Amplitude | Phase Angle
1 1.019 0.0018
2 1.020 0.0063
3 1.019 0.0030
4 1.018 -0.0048
5 1.019 -0.00030
6 1.018 -0.0053
7 1.019 -0.0022
8 1.019 -0.0026
9 1.019 0.0016
10 1.019 0.00065
11 1.019 0.0019

Tabell 10: Each node’s voltage amplitude and phase angle.

One can also observe how much power flows in each edge between the connected nodes. Table 11
demonstrates the specifics of the active and reactive power in the edges. Important to observe
is that the power going from node k to | is not always the same as the power going from node
I to k. An example of this can be seen where k = 7 and 1 = 9 where there is a 0.01 difference
between the two directions. This is due to losses in the network, and the amplitude of the losses
is dependent on the properties of the edges. Figure 2 illustrates the direction and amplitude of
active power flow between the nodes.

Edge (k,]) | Active Power k | Reactive Power | Active Power 1 | Reactive Power
to 1 k tol to k l1to k
(1, 2) -0.097 0.0015 0.097 -0.0011
(1, 11) -0.0032 -0.0015 0.0032 0.0015
(2, 3) 0.058 0.00072 -0.058 -0.00054
(2, 11) 0.080 0.0011 -0.080 -0.00078
(3, 4) 0.098 0.00027 -0.098 0.00050
(3,9) 0.030 0.00047 -0.030 -0.00043
(4, 5) -0.052 -0.00038 0.052 0.00062
(5, 6) 0.065 -0.00048 -0.065 0.00081
(5, 8) 0.022 0.00038 -0.022 -0.00033
(6, 7) -0.045 -0.00081 0.045 0.00095
(7, 8) 0.0034 -0.00040 -0.0034 0.00040
(7,9) -0.045 -3.6e-5 0.046 0.00021
(8,9) -0.065 -7.4e-5 0.065 0.00034
(9, 10) 0.013 0.00081 -0.013 -0.00080
(10, 11) -0.037 0.00080 0.037 -0.00075

Tabell 11: Each edge’s reactive and active power.

o 0.16

0.20
o

10
&

[] /G
~ =
=
5 ~ [[=]
& 004 —s| & N
\ o
b N
'5. L
% A a
' .
% /'Z‘.DJI
' o~

Figur 2: Direction and amplitude of active power flow

It is important to consider whether the achieved optimal solution is a global minimum or only
a local. The fundamental theorem of global optimality gives that if a problem is convex it
guarantees that the found min is global. However, this problem is not convex. This becomes
clear by looking at constraints (4) and (5) in the nonlinear programming system. For example,
cos(x) and sin(x) are non-convex functions. Further constraint (5) also contains the term -x2
which makes the constraint nonconvex. The solution could be global, yet this is nothing that
can be guaranteed. Therefore it is only possible to say that the solution is a local optimum.

To improve the cost function for the power distribution in the network, a possible modification
is to increase one of the generator’s maximum capacity. It is therefore relevant to reflect on
which increased maximum capacity would decrease the objective function the most. First, only
the generators that have reached their maximum capacity should be considered as potential
candidates. Increasing the maximum capacity of a generator that is currently not utilizing its
full capacity would not yield any effect on the objective function. Some other criteria should be
evaluated as well. The objective is to minimize the price, the price of power produced is therefore
an important aspect to consider. Another aspect to take into consideration is the generator’s
position in the network compared to the position of customers with a high power demand. The
position is important to consider as power traveling further distances experiences greater losses
in the network. This can be seen in the results as generator 1 did not maximize its capacity
even though it is the second cheapest generator.

To figure out which generator’s capacity to increase to reduce the cost the most, an easy way is

to look at the dual variables since they correspond to the reduced cost. Then the dual variable
with the lowest reduced cost should be chosen. The result of the reduced costs is presented
below in table 9. It is clear from table 12 that generator 5 corresponds to the lowest reduced
cost, therefore this is the generator whose capacity should be increased.

Generator | Reduced Cost
1 0
-75.0
-25.0
-111.6654
-170.6663
-2.5614e-7
0
-2.2595e-6
-100.0

O 0[O =W N

Tabell 12: Reduced cost corresponding to each of the generators.

3 Conclusion

When optimizing energy production over a network, many factors have to be taken into account.
Since power cannot be stored, the demand has to be met but there can be no overflow of power.
The result showed that the problem is more complex than it may first look. This was because it
is not just the cheapest generators that are maximized. Instead, their position in the network is
also of importance. Another contributing factor to the complexity of the model is the reactive
power which has to be accounted for in the network even though it does not directly influence
the cost.

The model shows that for the given network, the generators can supply all consumers with their
demand for 186.30 SEK. However, it is important to emphasize that the found optimal value is
not guaranteed to be global and hence, it is not possible to ensure that there does not exist a
lower cost.

In order to achieve a lower cost for the power production of the network, the maximum capacity
for generator 5 should be increased as it has the lowest reduced cost when analysing the dual
variables.

[CEECEN
w N =

[CECEN
= O © 0 N o U A& w

W oW W W W W W N NN
Gt W R o

A Julia Code

The code was divided into two sections. One for the data and another one for the optimization
model. The first file is called data and the code can be seen in the appendix section A.1. The
optimization implementation can be seen in the second section of the appendix, A.2.

A.1 Code in Data file

emax = [0.02, 0.15, 0.08, 0.07, 0.04, 0.17, 0.17, 0.26, 0.05] # Maximum
capacity

4d = [0.1, 0, O, 0.19, O, O0.11, O, 0.09, 0.21, 0.05, 0.04] # Demand
c = [175, 100, 150, 150, 300, 350, 400, 300, 200] # Costs

e_vars = 9 # Produced active power in gemnerator i, 1 = 1, .,9
r_vars = 9 # Produced reactive power in generator i, 1 = 1,...,9
v_vars = 11 # Voltage

t_vars = 11 # Angle

e_1» = [0, O, O, O, O, O, O, O, O]
r 1b = [-0.003 * emax[1], -0.003 * emax[2], -0.003 * emax[3], -0.003 * emax[4],
-0.003 * emax[5], -0.003 * emax[6], -0.003 * emax[7], -0.003 * emax[8],

-0.003 * emax[9]]

v_1lb = [0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98]

t_1lb = [-MathConstants.pi, -MathConstants.pi, -MathConstants.pi, -MathConstants
.pi, -MathConstants.pi, -MathConstants.pi, -MathConstants.pi, -MathConstants
.pi, -MathConstants.pi, -MathConstants.pi, -MathConstants.pil]

e ub = [0.02, 0.15, 0.08, 0.07, 0.04, 0.17, 0.17, 0.26, 0.05]
r ub = [0.003 * emax[1], 0.003 * emax[2], 0.003 * emax[3], 0.003 * emax[4],
0.003 * emax[5], 0.003 * emax[6], 0.003 * emax[7], 0.003 * emax[8], 0.003 =*

emax [9]]
v_ub = [1.02, 1.02, 1.02, 1.02, 1.02, 1.02, 1.02, 1.02, 1.02, 1.02, 1.02]
t_ub = [MathConstants.pi, MathConstants.pi, MathConstants.pi, MathConstants.pi,

MathConstants.pi, MathConstants.pi, MathConstants.pi, MathConstants.pi,
MathConstants.pi, MathConstants.pi, MathConstants.pil

matrixGenInNode = [[0O, O, O, O, O, O, O, O, O],
(t, ¢, 1, o, o, o, o, o, o1,
(o, o, o, 1, o, o, o, 0, 01,
(o, o, o, o, 1, o, 0, 0, o1,
(o, o, o, o, o, 1, o, o, o1,
o, o, o, o, o, o, o, o, o1,
(o, o, o, o, o, o, 1, o, o1,
(o, o, o, o, o, o, o, o, o1,
(o, o, o, o, o, o, o, 1, 11,
(o, o, o, o, o, o, o, o, o1,
(o, o, o, o, o, o, o, 0o, o011

matrixB = [[0, -20.1, O, O, O, O, O, O, O, O, -22.3],
[-20.1, O, -16.8, 0, 0, O, O, O, O, O, -17.2],
(o, -16.8, o, -11.7, 0, 0, 0, 0, -19.4, 0, O],
o, o, -11.7, o, -10.8, 0, 0, 0, 0, O, O],
(o, o, o, -10.8, 0, -12.3, 0, -9.2, 0, 0, 0],
(o, o, o, o, -12.3, o, -13.9, 0, 0, 0, 0],
o, o, o, o, o, -13.9, o, -8.7, -11.3, 0, 0],
[o, o, o, o, -9.2, o, -8.7, 0, -14.7, 0, 0],
(o, o, -19.4, o, o, o, -11.3, -14.7, 0, -13.5, 0],
o, o, o, o, o, o, 0, 0, -13.5, 0, -26.7],

[-22.3, -17.2, 0, O, O, O, O, O, O, -26.7, 0]]

> matrixG = [[0o, 4.12, 0, O, O, O, O, O, O, O, 5.67],

[4.12, 0, 2.41, 0, O, O, O, O, O, O, 2.78],

10

[0, 2.41, 0, 1.98, 0, O,
[0, o, 1.98, 0, 1.59, 0,
[0, o, 0, 1.59, 0, 1.71,
(o, o, o, o, 1.714, 0, 1
(o, o, o, 0, 0, 1.11, 0,
(o, o, o, o, 1.26, 0, 1
(o, o, 3.23, 0, 0, 0, 2
(o, o, o, o, o, 0o, 0, O,
[5.67, 2.78, 0, 0, 0, O,

A.2 Code in Main file

using JuMP
import Ipopt

[y

o

0, 0, 3.23,
0, 0, 0, 0,
0, 1.26, 0,
1, 0, 0, O,
1.32, 2.01,
32, 0, 2.41,
1, 2.41, 0,
2.14, 0, 5.0
0, 0, 0, 5.0

Import data from the data file

include("data.jl")

Create the model object
the_model = Model (Ipopt.Optimizer)

Create (one set of) variables,

@variable (the_model, e_1b[il]
@variable (the_model, r_1b[il

; @variable (the_model, v_1b[i]

@variable (the_model, t_1b[il]

Create the nonlinear objective which we want to minimize

@NLobjective (the_model, Min,

Constraints p
for node_k in 1:11

@NLconstraint (the_model,

0,

O],
0])

0],
0])

2.14,

D O
.

011

<= e[i=1:e_vars] <
<= r[i=1:r_vars] <
<= v[i=1:v_vars] <
<= t[i=1:t_vars] <

0])

e_ub[il)
r_ubl[i])
v_ub[i])
t_ub[i])

H OH OH #®

and their lower and upper bounds

Power in generator
Reactive power
Voltage

Angle

sum((e[i] * c[i]) for i in 1:e_vars))

(sum(matrixGenInNode [node_k][i] * e[i] for i in 1:

e_vars) - (sum(v[node_k]~2 * matrixG[node_k][node_1] -

v[node_k] * v[node_1] * matrixG[node_k][node_1] * cos(t[
node_k] - t[node_1]) -

v[node_k] * v[node_1] * matrixB[node_k][node_1] * sin(t[
node_k] - t[node_11])

for node_1 in 1:11))

end

Constraints q
for node_k in 1:11

@NLconstraint (the_model,

node_k] - t[node

node_k] - t[node

end

== d[node_k]))

((sum(matrixGenInNode [node_k][i] * r[i] for i in
1:r_vars) - (sum(-v[node_k]"2 * matrixB[node_k][node_1] +

v[node_k] * v[node_1l] * matrixB[node_k][node_1] * cos(tl[

211 -

v[node_k] * v[node_1l] * matrixG[node_k][node_1] * sin(t[

21D

for node_1 in 1:11)))

Solve the optimization problem

optimize! (the_model)
println(the_model)

11

0))

10
11
42

13

60

o s I B B B |
© 0 N O U

o

81

83

84

Printing some of the results for further amnalysis

println("") # Printing white line after solver output, before printing

println("Termination statue: ", JuMP.termination_status (the_model))

println("Optimal (?) objective function value: ", JuMP.objective_value(the_model
))

println("Optimal generated active power: ", JuMP.value.(e))

println("Optimal generated/absorbed reactive power: ", JuMP.value.(r))

println("Optimal voltage amplitudes: ", JuMP.value.(v))

println("Optimal voltage phase angles: ", JuMP.value.(t))

println("Optimal (?) point: ", JuMP.value.(e))

println("Dual variables/Lagrange multipliers corresponding to some of the

constraints: ")
#println (JuMP.dual.(SO0S_constr))
println (JuMP.dual.(JuMP.UpperBoundRef . (e)))

Print active power flow
for node_k in 1:11
for node_1 in 1:11

if matrixG[node_k][node_1] !'= O
println("Optimal active power flow in edge ", node_k, "
" is: ", JuMP.value(v[node_k] 2 * matrixG[node_k][node_1] -

node_1,

v[node_k] * v[node_1] * matrixG[node_k][node_1] * cos(tl[

node_k] - t[node_1]) -

v[node_k] * v[node_1] * matrixB[node_k][node_1] * sin(t[

node_k] - t[mode_11])
))
end
end
end

5 # Print active power flow netto

for node_k in 1:11
for node_1 in 1:11
if matrixG[node_k][node_1] !'= 0

println("Netto flow ", node_k, " ", node_1, " is: ", JuMP.value(v[

node_k]~2 * matrixG[node_k][node_1] -

v[

node_k] * v[node_1] * matrixG[node_k][node_1] * cos(t[node_k] - t[node_1]) -

v[

node_k] * v[node_l1] * matrixB[node_k][node_1] * sin(t[node_k] - t[node_1]) -

JuMP .value(v[node_1]"2 * matrixG[node_1][node_k] -

v[node_1] * v[Inode_k] * matrixG[node_1l][node_k] * cos(t[node_1] -

t[node_k]) -

v[node_1] * v[node_k] * matrixB[node_1l][node_k] * sin(t[node_1] -

t[node_k]))
))
end
end
end

Print reactive power flow
for node_k in 1:11
for node_1 in 1:11

if matrixG[node_k][node_1] != 0
println("Optimal reactive power flow in edge ", node_k,
, " is: ", JuMP.value(-v[node_k]~"2 * matrixB[node_k][node_1] +

12

n

3

node_1

88
89

90

end

t [node_k]

t [node_k]

end

end

v[node_k]
- t[node_1]) -

v[node_k]
- t[node_11)))

* v[node_1] * matrixB[node_k][node_1] * cos(

* v[node_1] * matrixG[node_k][node_1] * sin(

13

	Mathematical Formulation
	Properties of the Network
	Definition of Parameters and Variables
	Nonlinear Programming Problem

	Results and Analysis
	Conclusion
	Julia Code
	Code in Data file
	Code in Main file

