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Abstract

This paper aims to find an optimal model
to classify melanoma by using image
recognition. The model was found by
evaluating several approaches in isolation
and later some in combination. The dif-
ferent methods used were augmenting the
training data, normalizing, residual con-
nections, and using a pre-trained model.
The best-performing model found used
transfer learning with a pre-trained model.
This model reached an accuracy of 0.88
and was achieved by re-training a Con-
vNeXt model.

1 Introduction

Skin cancer is one of the world’s most common
cancer types (Venosa, 2018), though, it is very cur-
able if it is caught early. Melanoma is localized in
its early stages (Venosa, 2018). This means the
cancer is not spread in the body but is situated on
the skin. Queues to reach a medical professional
can be long, and introducing ML into the diagno-
sis of skin cancer could be one way of reducing the
work hours for practitioners in healthcare. With
this background, developing an ML model that can
detect melanoma becomes highly interesting.

How would such a model be designed? And
what aspects are important to consider to build
an efficient model? These questions are broken
down into more detailed subquestions: How well
does a basic convolutionary neural network per-
form in recognizing melanoma in images, and how
does the integration of data augmentation, batch
normalization, and residual connections affect this
performance? Additionally, the performance will
be compared to a model using transfer learning
with pre-trained models.

Further, what are some drawbacks or limita-
tions to ML models in diagnosing melanoma, and

are there biases built into the data and model that
could have serious effects if the model were de-
ployed? We aim to provide answers to these ques-
tions in the following sections.

2 Technical Solutions

As a first step, a baseline model was used for clas-
sifying the images. At this point, the data was
normalized and turned into tensor format but not
further transformed. It was also checked that the
data was balanced which it was. 10 epochs were
run with a batch size of 128. A few alternatives
were tried at random to decide which layers should
be used. This proved harder than expected, and
the model struggled to find any meaningful pat-
terns in the data. The output was only zeros every
time, consequently, the validation accuracy was
always 0.5 and the loss did not decrease. There-
fore, inspiration was taken from the article (Shep-
herd, 2021) about using image recognition for skin
cancer detection, and a similar model architecture
as used in the article was implemented. A differ-
ence for the layers in (Shepherd, 2021) compared
to what was initially tried out was that they used
leaky ReLU instead of ordinary ReLU and also a
larger Kernel size (5) for the convolutional layers.
The leaky ReLU multiplies negative values with a
small value instead of making them zero, prevent-
ing the ”dying ReLU problem”, (Shepherd, 2021),
which is that gradients become zero and are not
updated after that point, resulting in large parts of
the network being dead. A consequence of this
can be that the model always outputs zeros. Fur-
thermore, a larger Kernel size is better at finding
global features and larger patterns in the image,
and a small is better at noticing small details (De-
vron). The updated model performed better and
was therefore selected as the baseline model. The
model consists of four blocks and two heads. The
layers for this baseline model can be seen in ap-
pendix A.



Several additional techniques were added to the
baseline. First tried in isolation and then in some
combinations of techniques to try and find the
highest performing model. The first technique
added was a normalization technique. The batch
normalization was used and added after each con-
volutional layer as seen in appendix C. Batch nor-
malization is most efficient on larger batches as it
normalizes over it, so could be a suitable normal-
ization technique when using batch size 128. Fur-
ther, the data was shuffled to avoid any questions
about the randomness within each batch size.

In the next version, a few transformations were
used on the data to make the model more robust.
The transformations in table 1 were applied to the
data. The mean a in the normalization was set to
a = [0.485, 0.456, 0.406], and the std b was set to
b=[0.229, 0.224, 0.225]. All of the transforma-
tions were added to increase the robustness and
prevent overfitting by training the model on im-
ages that were skewed in one way or another.

Index Transformation
1 RandomHorizontalFlip(p=0.5)
2 RandomVerticalFlip(p=0.5)
3 RandomAffine(20)
4 Normalize(mean=a, std=b)

Table 1: Applied transformations for the custom
model.

Additionally, residual connections were added
to the baseline model. When using residual con-
nections, input going through layers is added with
input passing by. This prevents information loss in
later blocks of the model, which can otherwise oc-
cur when the input has been processed a lot. The
residual connections were added after each of the
four blocks in the model. To be able to add the
processed tensor with the skip tensor, these two
have to be the same size. This can either be done
by having the same size for input and output, or by
re-sizing the tensor passing by. Each approach was
tried out to see which would work the best. Using
the same input and output size created some re-
strictions on the model, so the baseline model had
to be refined, and the parameters changed. The
layers for both strategies can be seen in appendix
D.

As a last individual strategy to try, trans-
fer learning was used by using a VGG16- and
ConvNeXt-based model for feature extraction and

classification. Two common approaches in trans-
fer learning are fine-tuning a pre-trained model
and using a pre-trained model for feature extrac-
tion.

Inspiration was taken from (Simonyan and Zis-
serman, 2015) as the VGG16 image classification
model was adapted and fine-tuned with batch nor-
malization. It includes a feature extractor con-
sisting of 16 convolutional layers and a three-
layer feedforward neural network as a classifier.
Because the model is typically evaluated on the
ImageNet 1k dataset, the last layer was changed
to have a single output for binary classification.
Since this last layer is initialized randomly, at least
these weights have to be re-trained. Furthermore,
a model-specific data augmentation was employed
to maintain the integrity of the input data’s repre-
sentation as expected by the model.

Another attempt was made to train additional
layers of the classifier. The hypothesis was that
this might improve the classification accuracy, as
more weights are adopted to the data.

Lastly, a few methods were run, combining sev-
eral of the options described above. Two of the
combinations are described in this paper.

The data that the models were trained and evalu-
ated on were derived from the most extensive chal-
lenge in skin cancer classification as outlined in
(Codella et al., 2019). The used evaluation met-
rics were loss and accuracy, the results of these
two metrics can be seen in all of the tables describ-
ing each of the training epochs. The evaluation is
discussed further in section 5 about ethical consid-
erations.

3 Experiments/Results

The next sections describe the results of each
model on the data. Section 3.1 presents the base-
line, section 3.2 the results with normalization,
section 3.4 focuses on the use of residuals while
section 3.3 is results when using random transfor-
mations on the data. Section 3.5 shows the results
of using a pre-trained model.

3.1 Baseline Model

The result when using the baseline model de-
scribed in appendix A can be seen in appendix B
in figure 2. The baseline model reached a valida-
tion accuracy of 0.75 after ten epochs and a loss of
0.47.



3.2 Using normalization

Batch normalization was used to normalize the in-
put in the model. The results are in appendix E in
figure 3. The results show a higher validation ac-
curacy (0.81) and a lower loss (0.32) than the base-
line model in section 3.1. It shows that the use of
normalization positively impacts the performance
and makes it easier for the model to find meaning-
ful patterns in the data.

3.3 Data Augmentation

The layers from the baseline models, shown in ap-
pendix A, were used, together with the transfor-
mations displayed in section 2 in table 1. Figure
6 in appendix G shows the results of applying the
transformations to the data. The validation accu-
racy of 0.75 and loss of 0.45 is similar to that of
the baseline model in section 3.1. Using transfor-
mations did not really affect the results. Transfor-
mations usually result in a more robust and gener-
alized model, so it might have an impact on how
the model performs on data that is more diverged
than the data it was used on. Without testing this
it is not possible to say though. The reason for the
model not performing better with transformation
could be tied to the types of transformations cho-
sen or the images’ nature. All of the birth-mark
images were taken in quite a standard way, mean-
ing there is no significant advantage of being able
to classify a skin mark that is turned to a certain
degree, etc. Removing overlaying artifacts, such
as hair, in further pre-processing could be another
useful data augmentation approach, but was not in-
vestigated in this paper.

3.4 Residual connections

Residual connections mitigate several issues in
deep neural nets, such as information loss or
exploding or vanishing gradients (Wong, 2021).
Residual connections were used in two different
ways. The result of having the same input and
output size is shown in appendix F in figure 4,
and the result of re-shaping the tensors is shown in
5. The validation accuracy was 0.79 for both ver-
sions. However, the results show that re-shaping
the tensors was more efficient at reducing the loss
(0.36 for re-shaped vs 0.41 for using the same
size). This could be because it was easier for the
model to identify important features when look-
ing at the input at different scales. Addition-
ally, when re-shaping the tensors instead of hav-

ing the same input and output size, fewer param-
eters could be used which reduced computational
complexity. Overall, the residual connections re-
sult in the model performing better in all aspects,
for both approaches, indicating that the baseline
model might have had issues with information loss
or exploding/vanishing gradients.

3.5 Transfer Learning

Lastly, some forms of transfer learning were used
to approach this classification task. The finding
was that the training was more stable, the fewer
layers we trained, but the overall accuracy re-
mained mostly similar. Training only the last layer
and, to a lesser extent, the last two layers, seems
to provide a balance between leveraging the pre-
trained model’s knowledge and adapting to the
new task. Especially when updating pre-trained
weights, one has to be careful to preserve the in-
trinsic knowledge of the model, and there was an
occasional drop in accuracy during training which
could be attributed to this effect. A lower learn-
ing rate consistently yielded more stable train-
ing processes and better results, at the expense of
slower overall training progress. One interesting
approach might be to use a higher learning rate for
the last layer to build up knowledge from scratch
more quickly and a lower one for the pre-trained
classifier layers to preserve knowledge. Overall,
the challenge in fine-tuning remains to find a bal-
ance between many parameters, the mutual depen-
dence of which is not obvious.

Additionally, an investigation was made into
a more recent and state-of-the-art model family
called ConvNeXt (Liu et al., 2022), which is con-
ceptionally quite similar to the custom implemen-
tation of this paper, as it is primarily based on
convolutional neural networks. Additionally, it
showed a decent balance between top-1 accuracy
on ImageNet 1k and remaining rather small.

The computational cost had to be considered
with every operation on, and with, the rather large
pre-trained models. Training at times roughly
120m parameters requires significant compute
power, and we relied on supercomputer resources
with powerful GPUs to achieve short training du-
rations.

In conclusion, the VGG and ConvNeXt-based
models achieved validation accuracies of 0.88 and
0.89, respectively, outperforming the custom mod-
els by a noticeable margin.

https://help.itc.rwth-aachen.de/en/service/rhr4fjjutttf/
https://help.itc.rwth-aachen.de/en/service/rhr4fjjutttf/


3.6 Combination of Strategies

Two of the combinations tried were (i) using resid-
ual blocks and batch normalization, and (ii) using
residual blocks, batch normalization, and transfor-
mation. In these combinations, the residual ten-
sors are reshaped since this approach proved most
beneficial in isolation in section 3.4. The layers
of the two combinations are consistent with those
in appendix C though the second version also uses
the transformations described in section 2 in table
1. Figure 7 in appendix H displays the residual
blocks and batch normalization results. It reached
a validation accuracy of 0.84 which is higher than
for the baseline and most of the other previously
tried setups. The loss was 0.2 which is also lower
than the baseline. Batch normalization should usu-
ally reduce overfitting and make the model more
robust. The combination of using this and residual
connections proved beneficial for the model.

Figure 8 in appendix I shows the results from
the second combination. The validation accu-
racy reached 0.83 in its 10th epoch and a loss of
0.33. Again, using transformations did not yield
a higher accuracy than not using them. As previ-
ously stated, it might be because the data it vali-
dates on is quite standardized.

Even though the model also using transforma-
tions resulted in a similar accuracy, the model
without transformations got a lower loss. This
is reasonable since the data without transforma-
tions is more similar and, therefore, easier to find
patterns and specialize in. When the transforma-
tion is combined with residual connections, the
model becomes more robust and less specialized.
In many cases, having a robust and general model
is desirable. However, there are also cases when
it is not preferred. For example, if all images are
taken similarly, with the same angle and rotation,
the model could potentially reach higher accuracy
when trained and used on well-structured and sim-
ilar data. There is a trade-off between generaliza-
tion and specialization, and which one to priori-
tize depends on the situation. Medical images of
birthmarks are taken in a controlled environment,
where light, angle, and distance are easily kept in a
standard way. Therefore, there is reason to aim for
a specialized model and specialized data. How-
ever, with the current data, the more general model
performed similarly to the more specialized.

3.7 Best performing model

The best-performing model used ConvNeXt-based
transfer learning. This model was evaluated on
the test set data. The ConvNeXt-based model
achieved a test set accuracy of 0.88.

4 Limitations

First, limitations in the performance of the model.
The models described above are constricted to the
same training data and thus limited in the patterns
they might identify. This issue is prominent since
it is difficult to get large amounts of patient data,
and data is important for ML models (Zhang et al.,
2022).

The next limitation of the model is the time it
was developed. It takes time to train deep neu-
ral models, thus there are most probably several
models that perform better than the one found in
this paper, though due to the training time, the de-
velopment of the model was limited to a specific
number of runs and evaluations. A connected is-
sue is the limited number of epochs. All runs only
did 10 epochs which could have been increased
given more time.

Another aspect that the limited time imposed
was non-exhaustive hyperparameter tuning of all
models. Another such aspect is that only one in-
stance per model was trained, meaning the mod-
els could have ended up in suboptimal local min-
ima and thus missed much of their potential. This
could have been improved by training the same
model several times with different weight initial-
ization.

Now to the limitations in deployment. The
model is limited in its ability to explain classifi-
cations. The models described in the previous sec-
tions are all without any aspects of interpretabil-
ity. The models are limited in their explainability
to users of it.

There are also limitations regarding the evalu-
ation of the models. Only loss and accuracy are
considered, but when classifying images as having
or not having cancer, only considering these fac-
tors can be misleading and unfair to some models.
Other evaluation techniques, such as false nega-
tives could be important to consider as well, since
misclassifying images with melanoma as healthy
can be considered worse than misclassifying im-
ages without as sick. More on this in section 5.



5 Ethical Considerations

One important consideration is how the model is
evaluated. Throughout this report, the accuracy
score of the entire set is used, though the model
might have different accuracy scores depending
on the skin tone the image is depicted. Therefore
it would have been insightful to extend the accu-
racy score with scores evaluating the accuracy on
different skin colours. Another point to consider
regarding evaluation is sensitivity and specificity.
The two metrics are often in a trade-off relation-
ship, and thus, developers must choose which to
prioritize. In the question of cancer, the ques-
tion becomes, should the algorithm misclassify
patients with cancer or miss instances of the dis-
ease? If the disease is missed, people will go un-
treated, and this is incredibly dangerous according
to (Venosa, 2018) yet if patients are misclassified
with cancer, they will suffer unnecessary stress
and an increased cost for the health care system.
These questions must be balanced carefully.

Further, such a classification algorithm can only
distinguish between melanoma and nevus and can-
not identify other irregularities that might indicate
other diseases. This is something where a clinician
can be superior to the algorithm.

Now to the training data. The most optimal
would be to get specific stats on the images and
decide if all categories of skin tones are included
and represented to a good extent. This inspection
would demand an ML algorithm on its own. In-
stead, 50 images from the training set are printed
to inspect the skin color around the birthmarks.
Out of the 50 randomly printed images, without
certainty, one seems to represent a person with
dark or darker skin color (by manual inspection).
One such print of 50 images is shown in figure
1. Such a lack of representation means that the
ML model could perform worse on some groups
of people.

Another ethical consideration connected to fig-
ure 1 relates to the quality of each image. Some
images have a better quality than others. This
might depend on the hospital’s resources, the clin-
ician’s expertise, or the clinic’s surrounding envi-
ronment, such as lighting. Images might be prone
to get a certain classification due to other factors
in the image. One such example is the black sur-
roundings found in six of the images in figure 1.

A third issue related to the images is related to
integrity and privacy rights. Who should have ac-

Figure 1: Fifty sample images from the training
data.

cess to images from health care, and how should
they be connected to the patients from whom the
images are taken? Collecting a massive amount
of images is favorable for a successful and high-
performing ML model, yet the desire for increased
performance can lead to people crossing the line in
terms of patient privacy. It is important to consider
which images to save and what contracts to draft
with patients to make it legal and ethical.

There are several other ethical problems with
deploying such a system into the current health-
care system. First, who is held responsible for
a misdiagnosis? Second, how should a doctor’s
opinion be considered compared to that of the ma-
chine? Should the algorithm or the clinician have
the last say regarding the diagnosis? Third, how
can the algorithm’s decision be explained to the
patients? Is it enough to say that the algorithm
found melanoma, or does anything need to be
specified more precisely?

Now, if an algorithm were to go beyond the per-
formance of doctors, how can it be deployed to all,
and not only the rich? Who would be in charge of
such an algorithm? And if it is trained in one na-
tion and on a majority of its inhabitants, how are
the minority groups in those societies affected?

In conclusion, there are several ethical consider-
ations needed for an algorithm predicting diseases
such as melanoma. The following topics were
mentioned in the report; Evaluation method, sen-
sitivity/specificity, unbalanced or misrepresented
training data, classes outside the binary melanoma
vs NEV, varying possibilities to get high-quality
images, privacy and integrity rights, responsibili-
ties and involvement of computer and human clin-
ician, and the accessibility to a high performing



algorithm.

6 Conclusion

The optimal model found was the ConvNeXt. It
reached an accuracy of 0.88 on the test data.
Though this is relatively high, there are several
limitations to the models, most of them are tied
to the limited time during which the models were
developed and the associated computational effort.
The model also has some ethical limitations. For
example, concerning which groups of people are
represented in the training data. Several other eth-
ical considerations are needed if any such model
is to be deployed, for example, who has access to
the tool and maintaining patient integrity.
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A Layers of baseline model

Layer Parameters
Conv1 In: 3, Out: 64, Kernel: 5
LeakyReLU1 Negative slope: 0.01
MaxPool1 Kernel size: 2
Conv2 In: 64, Out: 32, Kernel: 5
LeakyReLU2 Negative slope: 0.01
MaxPool2 Kernel size: 2
Conv3 In: 32, Out: 16, Kernel: 5
LeakyReLU3 Negative slope: 0.01
MaxPool3 Kernel size: 2
Conv4 In: 16, Out: 8, Kernel: 3
LeakyReLU4 Negative slope: 0.01
MaxPool4 Kernel size: 2
Flatten -
Linear1 In: 200, Out: 32
LeakyReLU5 Negative slope: 0.01
Linear2 In: 32, Out: 1
Sigmoid -

Table 2: Layers of the Baseline model.

B Training Baseline

Figure 2: Results of baseline model.
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C Layers with Normalization

Layer Parameters
Conv1 In: 3, Out: 64, Kernel: 5
BatchNorm2d -
LeakyReLU1 Negative slope: 0.01
MaxPool1 Kernel size: 2
Conv2 In: 64, Out: 32, Kernel: 5
BatchNorm2d -
LeakyReLU2 Negative slope: 0.01
MaxPool2 Kernel size: 2
Conv3 In: 32, Out: 16, Kernel: 5
BatchNorm2d -
LeakyReLU3 Negative slope: 0.01
MaxPool3 Kernel size: 2
Conv4 In: 16, Out: 8, Kernel: 3
BatchNorm2d -
LeakyReLU4 Negative slope: 0.01
MaxPool4 Kernel size: 2
Flatten -
Linear1 In: 200, Out: 32
LeakyReLU5 Negative slope: 0.01
Linear2 In: 32, Out: 1
Sigmoid -

Table 3: Layers of the model with batch normal-
ization.

D Layers Residual Connections

Layer Parameters
Input -
1x1 Conv1 In: 3, Out: 64, Kernel: 1
Conv1 In: 64, Out: 64, Kernel: 5,

Padding: 2
LeakyReLU1 Negative slope: 0.01
MaxPool1 Kernel size: 3, Stride: 1,

Padding: 1
Add (residual1 + x) -
1x1 Conv2 In: 64, Out: 64, Kernel: 1
Conv2 In: 64, Out: 64, Kernel: 5,

Padding: 2
LeakyReLU2 Negative slope: 0.01
MaxPool2 Kernel size: 3, Stride: 1,

Padding: 1
Add (residual2 + x) -
1x1 Conv3 In: 64, Out: 64, Kernel: 1
Conv3 In: 64, Out: 64, Kernel: 5,

Padding: 2
LeakyReLU3 Negative slope: 0.01
MaxPool3 Kernel size: 3, Stride: 1,

Padding: 1
Add (residual3 + x) -
1x1 Conv4 In: 64, Out: 64, Kernel: 1
Conv4 In: 64, Out: 64, Kernel: 3,

Padding: 1
LeakyReLU4 Negative slope: 0.01
MaxPool4 Kernel size: 1
Add (residual4 + x) -
Flatten -
Linear1 In: 1048576, Out: 32
LeakyReLU5 Negative slope: 0.01
Linear2 In: 32, Out: 1
Sigmoid -

Table 4: Layers residual same input and output
size



Layer Parameters
Input -
Conv1 In: 3, Out: 64, Kernel: 5,

Padding: 2
LeakyReLU1 Negative slope: 0.01
MaxPool1 Kernel size: 3, Stride: 1,

Padding: 1
1x1 Conv1(residual1) In: 3, Out: 64, Kernel: 1
Add (residual1 + x) -
Conv2 In: 64, Out: 32, Kernel: 5,

Padding: 2
LeakyReLU2 Negative slope: 0.01
MaxPool2 Kernel size: 3, Stride: 1,

Padding: 1
1x1 Conv2(residual2) In: 64, Out: 32, Kernel: 1
Add (residual2 + x) -
Conv3 In: 32, Out: 16, Kernel: 5,

Padding: 2
LeakyReLU3 Negative slope: 0.01
MaxPool3 Kernel size: 3, Stride: 1,

Padding: 1
1x1 Conv3(residual3) In: 32, Out: 16, Kernel: 1
Add (residual3 + x) -
Conv4 In: 16, Out: 8, Kernel: 3,

Padding: 1
LeakyReLU4 Negative slope: 0.01
MaxPool4 Kernel size: 1
1x1 Conv4(residual4) In: 16, Out: 8, Kernel: 1
Add (residual4 + x) -
Flatten -
Linear1 In: 131072, Out: 32
LeakyReLU5 Negative slope: 0.01
Linear2 In: 32, Out: 1
Sigmoid -

Table 5: Layers residual reshaped

E Training Normalization

Figure 3: Results of model using normalization.

F Training Residuals

Figure 4: Results of model using residuals with
same size.



Figure 5: Results of model using residuals and re-
shaping.

G Training Random Transformations

Figure 6: Results of the model using random trans-
formations on training input.

H Training using Residual Blocks and
Batch Normalization

Figure 7: Results of model using residual blocks
and batch normalization.

I Training using Transformations, Batch
Normalization, and Residual
Connections

Figure 8: Results of model using transformations,
batch normalization, and residual connections.
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