
-456.7figure/auxiliary/frontpageguengvecm2.pdf

Dynamic Voltage Optimization for Energy
Efficient Radios

Comparing Problem Formulations for Adjusting Voltage in Ra-
dios Using Temporal Patterns

Master’s thesis in Data Science and AI

CECILIA NYBERG
ELIN STIEBE

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2025

Master’s thesis 2025

Dynamic Voltage Optimization for Energy
Efficient Radios

Comparing Problem Formulations for Adjusting Voltage in Radios
Using Temporal Patterns

CECILIA NYBERG
ELIN STIEBE

Department of Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden 2025

Dynamic Voltage Optimization for Energy Efficient Radios
Comparing Problem Formulations for Adjusting Voltage in Radios Using Temporal
Patterns
CECILIA NYBERG, ELIN STIEBE

© CECILIA NYBERG, ELIN STIEBE, 2025.

Supervisor: Linus Aronsson, Computer Science and Engineering
Advisor: Thomas Lejon, Thord Hyllander, Ericsson
Examiner: Morteza Haghir Chehreghani, Computer Science and Engineering

Master’s Thesis 2025
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: The image illustrates energy savings resulting from dynamic voltage level
switching in a radio unit.

Typeset in LATEX
Gothenburg, Sweden 2025

iv

Dynamic Voltage Optimization for Energy Efficient Radios
Comparing Problem Formulations for Adjusting Voltage in Radios Using Temporal
Patterns
Cecilia Nyberg
Elin Stiebe
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Reducing energy waste in radios is essential for lowering the CO2 footprint of cellular
connectivity. In current systems, radios operate at a static high voltage regardless
of their physical resource block utilization (PRB-U), resulting in inefficiencies. This
thesis proposes a machine learning (ML)-based approach to enable dynamic voltage
control and evaluates which models and task formulations are most suitable for this
purpose. Eight ML models were tested across two formulations: (1) classification of
voltage levels and (2) regression to predict PRB-U values and map them to voltage
levels.

The results show that ML can significantly reduce energy waste in certain radios,
although effectiveness varies by device - some perform comparably using simpler
methods. Classification outperformed regression in reducing voltage underestima-
tions.

The Random Forest (RF) classifier and a customized Feedforward Neural Network
(FFNN) classifier emerged as top performers. The FFNN achieved an F1 score of
0.35, saved 12.41% energy, and resulted in 34 underestimations. The RF reached an
F1 score of 0.29, saved 12.43%, and had 42 underestimations. In contrast, the best-
performing baseline model had an F1 score of only 0.19 with 55 underestimations
out of 68, underscoring the benefit of ML-based approaches.

Shifting the classification threshold helped manage the trade-off between energy
savings and underestimations. Notably, the FFNN achieved just 5 underestimations
while maintaining 10% energy savings.

SHAP-based explainability analysis showed that PRB-U at the current timestep
was the most influential feature. The RF leveraged a broader feature set, while the
FFNN focused more narrowly on a dominant input.

In conclusion, this thesis demonstrates that intelligent, ML-driven voltage control
can enhance energy efficiency in radios. It also emphasizes the importance of bal-
ancing energy savings and prediction errors during model deployment, potentially
by adjusting class probability thresholds.

Keywords: AI, dynamic voltage, energy efficiency, machine learning, optimization,
physical resource block utilization, radio, sustainability, time series, Optuna, SHAP,
traffic load prediction.

v

Acknowledgements
We would like to thank our supervisor Linus Aronsson for his support in forming the
outline of this thesis as well as providing concrete input on our work and implemen-
tation. Furthermore, we are grateful to our examiner Morteza Haghir Chehreghani
who had extensive meetings with us and was an immense help in structuring the
scope of the project and contributing with discussions.

We are grateful to our supervisors at Ericsson Thomas Lejon and Thord Hyllander
who gave continuous input and gave us a deeper understanding of radio functionality
and development. Furthermore, we are grateful for the topic of this thesis first laid
out by Thomas Lejon. We also want to thank Johan Seger for welcoming us to
his team and inviting us to several educational occasions such as bringing us into
a radio algorithm testing lab. Lastly, thank you Jing Liu B and other colleagues
within Radio Systems and Technology for guiding us within your respective fields.

Cecilia Nyberg, Elin Stiebe, Gothenburg, 2025-08-29

vii

Contents

List of Figures xiii

List of Tables xv

Glossary xvii

1 Introduction 1
1.1 Problem Statement . 2
1.2 Aim . 2
1.3 Limitations . 3
1.4 Thesis outline . 4

2 Theory 5
2.1 Radio Functionality . 5

2.1.1 Electronics . 7
2.1.2 Energy Saving . 9

2.2 Machine Learning . 10
2.3 Time Series Data . 11

2.3.1 Timeseries data for ML . 12
2.4 Models . 12

2.4.1 Random Forest . 13
2.4.2 Extreme Gradient Boosting 14
2.4.3 K-Nearest Neighbors . 14
2.4.4 Support Vector Machine . 15
2.4.5 Feedforward Neural Network 16
2.4.6 Recurrent Neural Network . 18
2.4.7 Long Short Term Memory . 19
2.4.8 Convolutional Neural Network 20
2.4.9 Temporal Fusion Transformer 21

2.5 Optuna . 22
2.6 SHAP . 22

3 Methodology 23
3.1 Solution Architecture . 23
3.2 Data Creation from an ML Perspective 24

3.2.1 Data Collection and Sources 24

ix

Contents

3.2.2 Creating Lagged Features . 24
3.2.3 Forecasting Horizon and Target Construction 24
3.2.4 Data Splitting . 25
3.2.5 Handling Missing Data . 25

3.3 Data Inspection . 25
3.3.1 Imbalance in Target . 25
3.3.2 Seasonality . 26

3.4 Feature Engineering . 31
3.5 Prediction Task Formulation . 33
3.6 Included Models and Their Optimization 34

3.6.1 Model Selection . 34
3.6.2 Model Specifications . 35

3.7 Hyperparameter Tuning . 42
3.7.1 Training specifications . 42
3.7.2 Tuning specifications . 43
3.7.3 Hyperparameter Analysis . 44

3.8 Synthetic Data Generation . 45
3.9 Evaluation . 45

3.9.1 Metrics . 45
3.9.2 Threshold Tuning . 47
3.9.3 Benchmarking Models . 47

3.10 Explainability . 48
3.11 Libraries . 49

4 Results 51
4.1 Hyperparameter Optimization . 51

4.1.1 Optimized Lag values . 51
4.1.2 Model-Specific Hyperparameters 55

4.2 Results on All Radios . 58
4.3 Results on Individual Radios . 64
4.4 Generalizability Evaluation . 70
4.5 Exploring the Trade-Off Between Energy Savings and Underestimations 72
4.6 SHAP-Based Interpretability of Top Models 73
4.7 Model Energy Consumption . 77

5 Discussion 79
5.1 RQ1: Viability of ML-based solutions 79
5.2 RQ2: Classification vs. Regression . 81
5.3 RQ3: Model Selection . 82

5.3.1 Architectural Preferences . 83
5.3.2 Model Performance . 85
5.3.3 Performance on Synthetic Data 86

5.4 RQ4: Explainability . 87
5.5 Reliability of Results . 89

6 Conclusion 91

x

Contents

Bibliography 93

A Completing Data Visualization I
A.1 Histograms of the Target Variable . I
A.2 Heatmap Target and Mean Power Consumption II
A.3 PRB Utilization: Weekly Patterns . II
A.4 PRB Utilization: Ten Day Curves . III

B Hyperparameter Search Space V
B.1 Common Parameters . V
B.2 Statistical Models . V

B.2.1 Random Forest Regressor . VI
B.2.2 Extreme Gradient Boosting VI
B.2.3 K-Nearest Neighbors . VI
B.2.4 Support Vector Machine . VII

B.3 Neural Networks . VII
B.3.1 Feed Forward Neural Network VIII
B.3.2 Convolutional Neural Network VIII
B.3.3 Long Short Memory . IX

B.4 Temporal Fusion Transformer . X

C Optimal Hyperparameters XIII

xi

Contents

xii

List of Figures

2.1 2G to 5G Frequency Bands. 6
2.2 Physical resource block for LTE cells (4G) [14]. 6
2.3 Venn diagram of the full power (Pin) and the subset of power used

for user connectivity (Pout). 8
2.4 Potential power save by halving the voltage when Pout is below 40W. 9
2.5 Venn diagram of relevant AI concepts. 10
2.6 Two-dimensional multivariate time series showing variation over time. 12
2.7 Decision tree architecture. 13
2.8 Random forest architecture. 13
2.9 XGboost’s iterative training process. 14
2.10 Example of KNC algorithm, k=3 [30]. 15
2.11 Prediction methodology of the SVR algorithm [33]. 16
2.12 Example of a feedforward neural network with four neurons and mul-

tiple hidden layers. 16
2.13 Example of recurrent neural network with a single hidden layer and

dashed recurrent connections . 19
2.14 LSTM Architecture [44] . 20
2.15 Kernel functionality in a 2D convolutional layer [48]. 21
2.16 Temporal Fusion Transformer architecture [49]. 22

3.1 Histograms of the target variable PRB-U with and without sleep
mode for radios 1 and 2. 26

3.2 Correlation between the target variable and the investigated lags. . . 27
3.3 Heatmap of average PRB-U over weekday and time of day. 28
3.4 Heatmap of the correlation between radios’ PRB-U. 28
3.5 The target variable over weekday and time of day for radio 2 and 4. . 29
3.6 PRB-U patterns for radio 2 and 4. 30
3.7 The target variable over weekday and time of day for radio 5. 30
3.8 PRB-U pattern for radio 5. 31
3.9 Correlation matrix of the features and the target variable. 32
3.10 FFNN architecture with Stacked Hidden Layers. 36
3.11 HybridLSTM with its modules and input streams. 37
3.12 Overview of the components of the HybridLSTM architecture. 39
3.13 HybridCNN with its modules and input streams. 40
3.14 Overview of the components of the HybridCNN architecture. 41
3.15 Training and validation loss for FFNN with log scaled y-axis. 43

xiii

List of Figures

4.1 SHAP values for lag per model over the three task formulations. . . . 54
4.2 Aggregated lag SHAP values for all models over the three task formu-

lations. 55
4.3 Performance of the FFNN model with and without residual connec-

tions. The y-axis shows the evaluation metric for each task: F1 score
for classification and regression tuned on F1, and MSE for Regression
tuned on MSE. 56

4.4 Performance of the FFNN model with and without sigmoid. The
y-axis shows the evaluation metric for each task: F1 score for classi-
fication and Regression tuned on F1, and MSE for Regression tuned
on MSE. 57

4.5 Scatter summary of all models. 61
4.6 Grouped bar charts of model performance in energy savings, under-

estimations and F1 score. 62
4.7 Trade-off between energy savings and underestimations across differ-

ent window sizes in baseline models. 63
4.8 Trade-off between energy savings and underestimations across differ-

ent window sizes in baseline models on synthetic data. 72
4.9 Model performance trade-offs under varying thresholds. Color en-

codes threshold level. 73
4.10 RF SHAP values for class 1. 74
4.11 FFNN SHAP values for class 1. 75
4.12 SHAP explanations for positive samples. True positives and false

negatives are shown for both models. 76
4.13 SHAP explanations for negative samples. True negatives and false

positives are shown for both models. 77

5.1 RF remained competitive in the overall evaluation. 86
5.2 Performance difference between test set and the synthetic data set. . 87

A.1 Histogram of the target variable PRB utilization with and without
sleep mode for serial 3. I

A.2 Histogram of the target variable PRB utilization with and without
sleep mode for serial 4. I

A.3 Histogram of the target variable PRB utilization with and without
sleep mode for serial 5. II

A.4 Correlation between the target variable and the previous mean power
consumption lag values. II

A.5 PRB utilization heatmap serial 1. III
A.6 PRB utilization heatmap serial 3. III
A.7 PRB utilization pattern for serial 1. IV
A.8 PRB utilization pattern for serial 3. IV

xiv

List of Tables

2.1 Some activation functions used to improve learning [37], [38]. 18

3.1 Missing timesteps in test data per radio. 25
3.2 Class distribution in each data set. 26
3.3 Features after data preprocessing. 33
3.4 Optimal values and ranges for the metrics. 47
3.5 Libraries used and their purposes. 49

4.1 Optimal lag per model and Optuna setup. 52
4.2 Statistics over residual inclusion for FFNN trials. 56
4.3 Statistics over sigmoid inclusion for FFNN trials. 57
4.4 FFNN architectural hyperparameters. 57
4.5 LSTM architectural hyperparameters and optimal lag values. 58
4.6 Optimal values and ranges for underestimations and energy saving. . 58
4.7 Evaluation results for all models, including benchmarks and machine

learning methods, on the test dataset. 60
4.8 Results from regression specific evaluations. 64
4.9 Upper range of metrics for each unit. 65
4.10 Full evaluation radio 1. 66
4.11 Full evaluation radio 2. 67
4.12 Full evaluation radio 3. 68
4.13 Full evaluation radio 4. 69
4.14 Full evaluation radio 5. 70
4.15 F1 score, energy saved, and number of underestimations for each

model at threshold 0.5. 71
4.16 Ratio of energy used for two ML models in regards to saved energy. . 77

5.1 Comparison of model performance across different evaluation aspects. 82

B.1 Scalers and their abbreviations. V
B.2 Hyperparameter search space for data preprocessing VI
B.3 Hyperparameter search space for RF. VI
B.4 Hyperparameter search space for XGB. VI
B.5 Hyperparameter search space for KNC/R. VII
B.6 Hyperparameter search space for SVC/R. VII
B.7 Hyperparameter search space for neural networks’ common hyperpa-

rameters. VIII

xv

List of Tables

B.8 Hyperparameter search space for FFNN VIII
B.9 Hyperparameter search space for CNN IX
B.10 Hyperparameter search space for LSTM IX
B.11 Hyperparameter search space for the dataset configuration X
B.12 Hyperparameter search space for TFT XI

C.1 Optimal hyperparameters RF. XIII
C.2 Optimal hyperparameters XGB. XIII
C.3 Optimal hyperparameters KNC/R. XIII
C.4 Optimal hyperparameters SVC/R. XIV
C.5 Optimal hyperparameters FFNN. XIV
C.6 Optimal hyperparameters LSTM. XIV
C.7 Optimal hyperparameters CNN. XV
C.8 Optimal hyperparameters TFT. XVI

xvi

Glossary

4G 4th generation of network technology.

5G 5th generation of network technology.

AI Artificial intelligence.

Cell Specific section of a geographical area covered by a radio.

CNN Convolutional neural network - ML architecture.

CO2 The green house gas carbon dioxide.

DL Deep Learning.

Energy Measured in kilo watt hours (kWh).

FFNN feedforward neural network - ML architecture.

TFT Temporal fusion transformer neural network - ML architecture.

KNR/KNC K-neighbors regression/classification - ML architecture.

LSTM Long short term memory neural network - ML architecture.

ML Machine learning.

Radio Receiver and transmitter of radio signals.

RF Random forest - ML architecture.

Power Measured in Watts (W).

Pin Power in to a radio (W).

Pout Power used for radio transmission (W).

Voltage Measured in volts (V).

PRB Physical resource block.

PRB-U PRB utilization

SVR/SVC Support vector regression/classification - ML architecture.

XGB Extreme gradient boosting - ML architecture.

xvii

List of Tables

xviii

1
Introduction

The Paris Agreement is one of the most significant milestones in climate policy
making, adopted on December 12, 2015 [1]. This legally binding treaty, established
under the United Nations, outlines in Article 2a the goal of “holding the increase
in the global average temperature to well below 2◦C above pre-industrial levels and
pursuing efforts to limit the increase to 1.5◦C”. January 2025 was the warmest ever
recorded with temperature levels 1.75◦C above pre-industrial levels [2]. The month
was one of the 18 out of the past 19 months where global temperatures exceeded
1.5◦C above pre-industrial levels.

The Information and Communication Technology (ICT) sector accounts for 4% of
global energy consumption during its use phase and 1.4% of greenhouse gas emissions
in 2020 [3]. These figures do not account for emissions from the development or end-
of-life phases. The environmental impact of ICT is closely tied to the source of
electricity. For instance, in 2023, Sweden had an estimated carbon intensity of 41
gCO2 per kWh, in contrast to Germanys 381 and Chinas 582 gCO2 per kWh [4].
In addition to environmental concerns, energy use also represents a major cost for
telecom operators estimated at up to 5% of revenue [5]. This dual incentive, with
environmental and financial factors emphasize the importance of energy-efficient
solutions in ICT.

Machine learning (ML) has emerged as a powerful tool to improve sustainability
by predicting patterns and optimizing energy usage. In integrated energy systems,
which connect multiple energy sources, ML has shown potential in forecasting and
optimizing operations to achieve net-zero CO2 emissions [6]. Similarly, in the con-
text of smart homes, ML models have been used to segment households based on
their energy usage, allowing for more tailored and effective energy management
strategies [7]. Another promising application is dynamic power management by
automatically shutting down idle devices. Studies show that ML can successfully
determine optimal shut-down strategies based on the state of a device, leading to
substantial energy savings [8].

Time series forecasting is a field within ML that has advanced rapidly in recent
years, supported by the increasing availability of data [9]. It is widely applied in
fields such as healthcare, finance, and industrial production [9], and has also shown
promise in energy efficiency applications [10]. A wide range of methods exist, from
statistical models to machine learning techniques [11].

1

1. Introduction

This thesis contributes to the area of sustainable ML-driven energy optimization
by proposing a dynamic voltage strategy for Ericssons radio units using time series
data. While Ericsson already implements features like sleep mode, allowing radios
to be turned off during low traffic hours, this thesis focuses on periods when radios
must remain active but are not required to operate at full capacity. By providing a
strategy for dynamically adjusting voltage levels in real-time based on demand, this
research aims to reduce power consumption and, by extension, carbon emissions.

1.1 Problem Statement
Each radio operates at a preconfigured power level, determined by the voltage setting
of its power amplifier, which directly affects its power consumption. Currently, these
units are always set to their maximum voltage to accommodate peak demand at any
time. However, this approach leads to excessive energy consumption, resulting in
both environmental impact and higher operational costs for customers.

This thesis addresses the energy inefficiency by developing a machine learning-based
methodology capable of predicting power demand for the next time step. The goal is
to enable dynamic voltage adjustment between predetermined levels in radio units,
ensuring that power levels are aligned with actual utilization. By intelligently scaling
voltage in response to predicted demand, the solution aims to reduce unnecessary
energy consumption without compromising performance.

1.2 Aim
The aim of this thesis is to develop a strategy for reducing excess energy consumption
in radio products by predicting usage patterns through time series forecasting. Based
on these predictions, the system can dynamically adjust the voltage settings of radio
units in real time to align with actual demand. This approach seeks to improve
energy efficiency, lower operational costs, and contribute to broader sustainability
goals.

The project proceeds in four main stages. First, it investigates whether machine
learning-based methods offer performance advantages over simpler statistical ap-
proaches for the specific task. Since machine learning models are generally more
complex and resource-intensive, simpler methods would be preferred if they yield
comparable results.

Second, the project compares two possible formulations of the prediction task: re-
gression and classification. Since the voltage can only be set to a fixed number of
discrete levels, it is not immediately clear which approach is more suitable. In the
classification setting, the model predicts the voltage level directly as a class label,
whereas in the regression setting, a continuous value is predicted and mapped to
the nearest voltage level. Effectively all versions work to classify the voltage levels,
though they are optimized under different conditions. Including both formulations
allows this thesis to evaluate which approach yields better performance for the given

2

1. Introduction

application.

For regression, hyperparameters are tuned using two separate objectives — Mean
Squared Error (MSE) and F1 score — to better address class imbalance. All mod-
els are optimized using Optuna [12], an advanced hyperparameter tuning frame-
work [11]. The length of historical input data is treated as a tunable hyperparameter,
enabling investigation of how its role varies across task formulations.

Third, the thesis compares the models predictive performance to identify the best-
performing architecture for the task. This includes an analysis of different architec-
tural configurations to determine which components contribute most to performance.
Additionally, the optimal hyperparameters obtained through Optuna tuning are ex-
amined for each model to gain insight into configurations associated with strong
performance. As the models are intended for deployment in a resource-constrained
environment, the complexity of the tuned architectures is also evaluated.

Lastly, the thesis investigates which variables are most important for determining the
voltage level in radios. This is done using SHAP [13] to analyze the best-performing
models.

The contribution of this thesis will be made through answering the following research
questions:

• RQ1: Are machine learning techniques useful for dynamic adaptation of volt-
age in radios?

• RQ2: What are the advantages and disadvantages of using classification ver-
sus regression in the case of energy-efficient radios?

– RQ2.1: Given the class imbalance, should the hyperparameters for re-
gression models be tuned using MSE or F1 score?

– RQ2.2: How is historical information handled differently across the ap-
proaches?

• RQ3: Which machine learning models are most beneficial in terms of energy
saving and optimal connectivity?

• RQ4: Which input variables are most influential in determining voltage levels
in energy-efficient radios? This is investigated through explainability analyses
of the top-performing models.

1.3 Limitations
The goal of reducing energy consumption in radios is inherently constrained to the
dynamic portion of total energy use. As discussed later in Section 2.1, a percentage
of the power consumption is static and does not depend on traffic load. Further-
more, this thesis only evaluates two levels of voltage as this is easier to implement
in radio hardware. An assumption for the lower level is that a reduction in voltage
level by 50% corresponds to an approximate 15% decrease in power. This is further

3

1. Introduction

discussed in Section 2.1.2. Further research is encouraged to more precisely quan-
tify the relationship between voltage decrease and a shift in power across different
operational settings and radios. This thesis relies on several other theoretical and
mathematical assumptions. While these are clearly stated in the relevant sections,
it should be noted that such assumptions may introduce minor discrepancies, as
real-world behavior rarely aligns perfectly with idealized models.

Moreover, the primary focus of this study is on single-cell radio systems. While the
multi-cell scenarios are described, it is not part of the investigation of this research.
Hence, the generalizability of the proposed method will be discussed and evaluated
as part of the concluding analysis.

Additionally, the training and validation data correspond to five selected radios’
recorded during the time period from January 17, 2025, to March 6, 2025. The
test data is retrieved from March 8 2025 until April 1 2025. The 7th of March was
excluded to avoid creating any overlap between the training and testing phase as the
time series data has a lag and hence has knowledge about data back in time. This
fact is explained in more detail in Section 2.3. The selection of time intervals to train
and test the models within introduce a limitation as there is no way of concluding the
models’ effectiveness in another month or year. Similarly, the models were selected
as a subset of options. This thesis only examines the performance on eight potentials
on the task. It is possible that other ML based approaches that were not included
in this thesis could perform better.

1.4 Thesis outline
• Chapter 1 Sets the background of this thesis, introduces relevant literature,

describes its limitations and states the research questions.

• Chapter 2 Contains theory on the radio context, data and different ML
architectures. It further introduces the Optuna framework used for tuning all
of the models.

• Chapter 3 Describes the methodology used to answer the research questions
through visualizing the data, describing the hyperparameter tuning and eval-
uation tactic of this thesis.

• Chapter 4 Shows the result of this thesis through the evaluation results of
the models and relevant statistics tied to those results.

• Chapter 5 Discusses the thesis’ results, reliability and limitations, and ad-
dresses the research questions.

• Chapter 6 Answers the research questions and states the conclusions of this
thesis.

4

2
Theory

This chapter dives into the theory and background knowledge needed to follow the
problems solved within this thesis. Section 2.1 describes the radio functionality. All
facts in Section 2.1 are based on Expert knowledge within Ericsson. Its subsec-
tion 2.1.1 discusses the knowledge needed within electricity and 2.1.2 visualizes and
makes the potential saving more concrete. Later Sections dive into technical back-
ground for the ML and methodology of this thesis, Section 2.2 discusses general ML
theory, Section 2.3 discusses time series data which is used in this thesis and Sec-
tion 2.4 brings up theory about the investigated models. Section 2.5 describes the
hyperparameter tuning conducted with Optuna, and lastly 2.6 describes the SHAP
method, used to analyze and add explainability to some models’ outputs.

2.1 Radio Functionality
Radios receive digital signals from a baseband unit, process them, and transmit
analog signals to enable telecommunication services such as 4G or 5G. Each radio is
configured for specific capabilities, including the frequency range referred to as the
band in which it operates. These frequency allocations vary by country, depending
on regulatory constraints. Fig. 2.1 illustrates possible intervals of frequency bands.
Lower generations of mobile technology typically operate in lower frequency ranges,
while newer generations utilize a broader spectrum, expanding both upward and
downward. Lower frequencies get less disturbances from physical obstructions such
as walls, making them more suitable for indoor coverage. For this reason, many
operators prioritize frequencies between 700 MHz and 2 GHz.

5

2. Theory

2G

3G

4G

5G

2G to 5G Frequency Bands

900 MHz 2 GHz 1 GHz 6 GHz

Figure 2.1: 2G to 5G Frequency Bands.

The target variable used in this thesis is Physical Resource Block utilization (PRB-
U), which is the extent to which a radios PRB is utilized. Fig. 2.2 shows the physical
resource block for LTE (4G) cells depicted by [14]. A PRB is a number of symbols
in the time domain and a number of subcarriers in the frequency domain [15], the
symbol and sub-carrier can be seen to the upper right in Fig. 2.2. For the purposes
of this study, the key insight is that PRB-U reflects the proportion of a radio’s total
data-handling capacity that is currently in use.

Figure 2.2: Physical resource block for LTE cells (4G) [14].

The total power consumption of a radio depends on several factors, of which only a
subset is related to its utilization. This thesis specifically targets the power which
can be dynamic due to user patterns. The portion of power consumption attributed
to utilization is referred to as Pout throughout this thesis and is assumed to be
fully proportional to the radio’s utilization, as described in Eq. 2.1. The term
Pout max denotes the maximum power that can be allocated for utilization, and this

6

2. Theory

value varies between radio units. For the specific radio examined in this thesis,
Pout max = 160 W.

Pout = Pout max ∗ PRB-U (2.1)

Each radio unit can consist of multiple cells, where each cell is individually config-
ured and acts as a connection point for users. The total number of users connected
to a radio is the sum of users across all its cells. Each cell has its own allocation of
Physical Resource Blocks (PRBs) and consumes power based on two components:
the traffic-dependent power and a constant base power required for other cell oper-
ations. This relationship is expressed in Eq. 2.2.

Powercell =
∑

Powertraffic + Powerother cell operations (2.2)

The energy consumption of radios are driven by activities in its cells, as well as by
internal operations and communication with other network elements. This relation-
ship is described in Eq. 2.3.

Powerradio =
∑

cells∈Radio

Powercells + Powerother radio operations (2.3)

Radios may have several cells from different technology generations (such as having
both 4G and 5G), which behave differently in terms of energy efficiency. The 5G
cells are typically more energy-efficient during stand-by hours of lower overall usage.
However, since the radio’s total power is the sum of all its cells, such generational
nuances get lost at the aggregated radio level.

Furthermore, customers have the option to activate sleep mode on their radio units,
activation makes specific cells within the radio disabled during predetermined hours.
This capability is demonstrated later in Fig. 3.3, where utilization rates drop to
zero during nighttime and early morning periods. As all radios analyzed in this
study have sleep mode activated, the potential for additional energy savings on
these units is likely diminished compared to radios without sleep mode, given that
nighttime utilization is inherently low. Additionally, the application of dynamic
voltage scaling does not yield further energy-saving benefits during intervals when
sleep mode is engaged.

2.1.1 Electronics
The aim of this thesis is to develop a dynamic voltage strategy that adapts to user
utilization levels. As previously described in Eq. 2.3, the total energy consumed by
a radio includes not only the power used by the cells that connect users but also the
energy required for other radio operations. Therefore, the input power to the radio,
denoted as Pin, is not solely determined by PRB utilization (PRB-U) and cannot be
entirely regulated based on utilization alone.

7

2. Theory

As introduced in Section 2.1, the maximum transmission power output from the
radio, Pout, is 160 W, while the total input power, Pin, is 600 W. This yields a
maximum power conversion efficiency of approximately 26.7%. The remaining 73.3%
of the energy is consumed by other operational needs within the radio or is lost as
heat. Fig. 2.3 provides a simplified illustration of the relationship between the input
power, Pin, and the output power, Pout, where the latter scales with user utilization.

Pin

Pout

Figure 2.3: Venn diagram of the full power (Pin) and the subset of power used for
user connectivity (Pout).

As previously shown in Eq. 2.1, Pout is directly dependent on the radio’s utilization,
consequently Pout is not a tunable parameter. Similarly, the power capacity Pin is
fixed. However, the voltage level is adjustable, and targeted throughout this thesis.
Voltage, Pout, and resistance R are closely linked through the relationship in Eq. 2.4.
Although resistance may vary slightly due to factors like temperature increases when
the radio is active, it is assumed constant in this context. The relationship can thus
be simplified as shown.

Pout ∝ U2/R ∝ U2 (2.4)

Eq. 2.4 gives the relationship between voltage adjustment and Pout capabilities. The
change in Pout with a 50% voltage is as shown in Eq. 2.5. Such an adjustment
decreases Pout by a factor of 1

4 . An important thing to note is that, setting Pout
capabilities too low result in connective issues for users. Hence any underestimation
of the voltage would have a negative impact on the product performance.

P new
out = P old

out ∗ (1
2

)2 (2.5)

As previously described in this section, Pout represents only a subset of the total
input power, Pin. Therefore, a reduction in Pout does not directly correspond to
the same proportion of energy savings. The exact impact on Pin is not precisely
known; however, estimates were made using internal tools for this thesis. According
to internal resources at Ericsson, it is reasonable to assume that a 15% reduction in
Pin can be achieved with a 50% decrease in the voltage for the specific radio studied
in this thesis. This voltage shift enables energy savings, which are discussed in
further detail in Section 2.1.2. The 15% energy saving is an important assumption
throughout this thesis.

8

2. Theory

2.1.2 Energy Saving
The energy savings enabled by this thesis are achieved through dynamically adjust-
ing the radio’s power used for user connectivity (Pout) based on demand. Specifically,
the voltage is reduced when Pout falls below a predefined threshold, which subse-
quently reduces the input power Pin, of which Pout is a subset. As previously noted,
a 50% decrease in voltage leads to an estimated 15% reduction in Pin, representing
the energy savings. Energy consumption, measured in kilowatt-hours (kWh), is cal-
culated as the integral under the power curve (measured in watts). The resulting
energy savings from shifting the Pin curve are thus given by Eq. 2.6. The power
input to the radio, Pin, is denoted using subscripts to reflect the applied voltage
strategy:

• Pin,static refers to the power input when the voltage is fixed at a high level
regardless of demand.

• Pin,dynamic is the power input when the voltage is adjusted dynamically accord-
ing to user utilization, as previously described.

The total energy saved over a time interval [t1, t2] is given by:

Esaved =
∫ t2

t1
(Pin,static − Pin,dynamic) dt (2.6)

Concretely, applying a voltage reduction results in a shift in the Pin curve, as visu-
alized in Fig. 2.4. Instances where Pout is above the threshold remain unaffected,
the reduction is only applied during the periods when Pout is below the threshold.
The energy savings in Fig 2.4 correspond to the light blue shaded area between the
original Pin curve and the adjusted curve. The light green areas are those where Pin

could be decreased due to Pout being under the set threshold.

Figure 2.4: Potential power save by halving the voltage when Pout is below 40W.

9

2. Theory

2.2 Machine Learning
ML models can produce either discrete or continuous outputs [16]. When the output
is discrete, the task is known as classification; when it is continuous, it is referred
to as regression. Binary classification, as the name suggests, involves only two
possible output classes. A key concept in ML is supervised learning, where models
are trained on labeled data - that is, data for which the desired output is known [16].
Both regression and classification are common types of supervised learning tasks. On
the other hand, unsupervised learning is ML trained without any labels, a common
example being clustering where data is grouped without label knowledge [16].

The process of applying algorithms to data is called learning or training. The gen-
eralizability of a model is its ability to predict on new data instances [16]. A well
trained ML model should work well over the entire sample size. A challenge gener-
ated by many datasets are that of building models on imbalanced data. Having a
disproportion between classes creates a bias for the more common group [17]. Most
studies suggest that an imbalanced dataset has a proportion of 1:4 up to 1:100
though there might be more skewed distributions in real life applications.

Deep learning (DL) is a subfield within ML utilizing several layers of representa-
tion [18]. Examples of DL models are feedforward neural network, convolutional
neural network, long short term memory and temporal fusion transformer which are
discussed further in Section 2.4. Fig. 2.5 shows the connection between AI, ML and
DL.

AI

ML

DL

Figure 2.5: Venn diagram of relevant AI concepts.

Hyperparameters are an important concept in machine learning [19]. In ML models,
there are two types of parameters: model parameters, which are learned and updated
during training, and hyperparameters, which relate to the model’s structure and
training configurations. Hyperparameters cannot be learned from the data and
must instead be specified prior to training [19]. These parameters can significantly
impact model performance and must therefore be chosen carefully. They may relate
to model complexity, such as the number of layers in a neural network, or the learning
process itself, such as the learning rate.

10

2. Theory

Tuning hyperparameters is still considered something of a black art [19]. Several
tuning strategies exist, each with advantages and limitations. Common methods
include Grid Search (GS), which exhaustively searches the hyperparameter space;
Random Search (RS), which samples combinations randomly; and Bayesian Opti-
mization (BO), a probabilistic approach that models the performance landscape to
guide the search more efficiently.

2.3 Time Series Data
Time series data is a collection of observations recorded in chronological order. The
goal of modeling time series data is often to predict future target values that follow
certain patterns over time. The following key characteristics are important for time
series modeling [20]:

(i) Univariate/multivariate. Whether the data consists of a single time series or
multiple channels.

(ii) Stationarity. Whether the mean and variance remain constant over time.

(iii) Seasonality. The presence of short-term patterns that repeat at regular inter-
vals.

(iv) Outliers and noise. Irregular data points or fluctuations that deviate from
expected patterns and can complicate prediction and analysis.

(v) Interdependencies between channels. The degree to which different time series
channels are correlated.

Each data instance represents a specific time step t, and can be divided into xt, a
vector of features, and yt, the corresponding label. xt may include several lagged
instances, making the data multivariate, as illustrated in Fig. 2.6. The figure shows
an example of two features and how they vary over time. In the multivariate case two
or more such instances are included in the dataset. Multivariate time series data
typically offer greater predictive power, though they are more complex and may
require larger datasets [20]. Forecasting the next value in a time series typically
involves using a window of past observations. For example, to predict the value at
time step yt+1, the model uses the input sequence [xt, xt−1, . . . , xt−w], where w is the
window size, also known as the lag.

11

2. Theory

Features

Time

x1

x2

xt−7 xt−6 xt−5 xt−4 xt−3 xt−2 xt−1
... xt

x1

x2

Figure 2.6: Two-dimensional multivariate time series showing variation over time.

2.3.1 Timeseries data for ML
When preparing time-series data for machine learning tasks, an important design
choice is how to incorporate past values into the input, a process commonly referred
to as defining the estimation window [21]. Two standard approaches are the sliding
(or rolling) window and the expanding window. In the sliding window approach,
the input consists of a fixed number of past observations, referred to as the look-
back length, which determines how far back the model considers for each prediction.
Each input vector in the time-series data is constructed by extending the current
observation with past values up to this look-back length - from the single time series
in the univariate case, or from all variables in the multivariate case. In contrast, the
expanding window grows over time: for a prediction at time t, the input includes
all observations up to t; for time t+1, it expands to include the observation at t as
well.

The window size in the sliding window approach can be considered a hyperparame-
ter [22]. It is particularly important because it determines how much past informa-
tion the model receives for each prediction. Ideally, this information should capture
both short- and long-term dependencies, as well as recurring patterns such as season-
ality [22]. If the window is too small, the model may not receive sufficient context;
if too large, it may struggle to identify relevant signals.

After augmenting the input data with past values, the target labels must be created.
This requires specifying the prediction horizon, which defines how many steps ahead
the model should forecast. For time-series data, labels are generated by shifting the
values of the target variable forward by the length of the prediction horizon.

2.4 Models
This thesis implements eight different machine learning models for three task for-
mulations and evaluates them according to metrics later described. This section
describes the architecture and functionality of each model.

12

2. Theory

2.4.1 Random Forest
The Random Forest model is an ensemble of tree predictors [23]. Each tree has a
structure similar to the one shown in Fig. 2.7 [24], and is trained on a sub-sample of
the data selected through bagging (bootstrap aggregating) combined with random
feature selection [23]. As described in the same article, each tree treet has a vector
of features Θt of length k where each vector is sampled from the same distribution
independently from the previous samples.

Each branch is made on a split selection that aims to increase the purity within each
branch, meaning the representation of one single class [16]. One such measurement
is entropy, where lower entropy defines higher purity. Two other measurements used
are log loss and gini impurity index [25].

x

x<a

x<b y1

y2...

Figure 2.7: Decision tree architecture.

The complete Random Forest consists of a collection of such decision trees, as further
illustrated in Fig. 2.8.

Random Forest

Tree 1 ... Tree n

Final Prediction

Figure 2.8: Random forest architecture.

A random forest can be described as an ensemble of tree-structured classifiers de-
noted by h(x, Θk), k = 1, 2, . . . [23]. Each Θk represents an independently and iden-

13

2. Theory

tically distributed (i.i.d.) random vector that governs the construction of tree k. For
a given input x, each tree outputs a classification result, and the final prediction is
made based on the majority vote among all trees in the forest. This describes how
RF predicts classification. On the other hand, the result for regression output is the
mean of the trees included in the forest as Eq. 2.7 shows [26].

h(x) = 1
K

K∑
k=1

h(x, θk) (2.7)

2.4.2 Extreme Gradient Boosting
Extreme Gradient Boosting (XGB) is a widely used tree boosting method [27]. Gra-
dient boosting applied to regression trees yields models that are not only robust and
interpretable but also highly effective for both regression and classification problems.
This approach is particularly well-suited for handling data that may be noisy or im-
perfect [28]. The algorithm builds trees sequentially, with each new tree trained to
correct the errors of the previous ones, as illustrated in Fig. 2.7. More precisely,
each new regression tree is trained on the negative gradient of the loss function [29].

T1

T1

+

T2

T1

+

T2

+

T3

...
Loss 1 Loss 2 Loss 3

Figure 2.9: XGboost’s iterative training process.

2.4.3 K-Nearest Neighbors
The K-Nearest Neighbors classifier (KNC) works by clustering input according to its
features. The algorithm is as follows; All training instances get a label, the instance
to be predicted is then put into the space and the distances are measured between
the new instance and all training instances [30]. The number of k nearest instances
are selected, the predicted class is decided as a majority vote. It is common to give
closer neighbors increased weight in their vote [30]. The regression version (KNR)
is similar, though the prediction label is calculated as a mean of the neighbors’
labels [31].

KNC is easily explained as the prediction depends on its neighbors [30]. On the
other hand, it can have a poor run-time. Fig. 2.10

14

2. Theory

Figure 2.10: Example of KNC algorithm, k=3 [30].

2.4.4 Support Vector Machine
Support Vector networks were initially introduced as a method for classification. The
classification version, support vector classification, is refered to as SVC through-
out this report. The core idea is to map input vectors non-linearly into a high-
dimensional feature space, where a linear decision boundary can be constructed [32].
This linear separator defines an optimal hyperplane that maximizes the margin be-
tween different classes. Data points that lie on the margin boundaries are known as
support vectors [32]. When the data is not linearly separable, slack variables ε are
introduced to allow for some misclassifications. These slack variables are penalized
in the optimization problem to ensure the classification error is minimized as much
as possible.

The support vector machine (SVM) framework was extended to handle regression
problems in 1996, resulting in the Support Vector Regression (SVR) algorithm [33].
As described by Basak et al., “The idea of SVR is based on the computation of a
linear regression function in a high-dimensional feature space where the input data
are mapped via a nonlinear function” [34]. In SVR, a similar principle is applied:
instead of finding a hyperplane that separates classes, the goal is to find a function
that approximates the target values as accurately as possible within a specified mar-
gin of tolerance. The regression model attempts to fit the data points while ignoring
deviations smaller than a predefined threshold, thereby controlling model complex-
ity and generalization. Fig. 2.11 illustrates the prediction methodology employed
by the SVR algorithm [33].

15

2. Theory

Figure 2.11: Prediction methodology of the SVR algorithm [33].

2.4.5 Feedforward Neural Network
Feedforward Neural Networks (FFNNs) are characterized by a layered architecture
consisting of an input layer, one or more hidden layers, and an output layer [35].
Fig. 2.12 illustrates the structure and interaction between these layers. The input
layer receives the raw input data, denoted as x in the figure, with three features
shown as an example. The hidden layers apply learned transformations to the input,
and the output layer generates the final predictions of the model.

x1

x2

x3

H1,1

H1,2

H1,3

H1,4

...

...

HL,1

HL,2

HL,3

HL,4

O

Input Layer

Hidden Layer 1 Hidden Layer L

Output Layer

Figure 2.12: Example of a feedforward neural network with four neurons and multi-
ple hidden layers.

FFNNs commonly apply affine transformations followed by specified non-linear ac-

16

2. Theory

tivation functions [35], as shown in Eq. 2.8 and Eq. 2.9. In Eq. 2.8, z(1) denotes
the pre-activation values of the first layer, computed as a linear combination of the
input x with the learned weight matrix W(1) and bias vector b(1). In Eq. 2.9, h(1)

represents the output of the first hidden layer, obtained by applying the non-linear
activation function g to z(1). The activation function introduces non-linearity into
the network, enabling it to learn complex patterns [35].

z(1) = W(1)x + b(1) (2.8)

h(1) = g(z(1)) (2.9)

This process is repeated for each hidden layer, where the output from the previous
layer becomes the input to the next. More generally, the equivalent of x in Eq. 2.8
for layer l is h(l−1), resulting in:

z(l) = W(l)h(l−1) + b(l), h(l) = g(z(l)) (2.10)

In the final layer, the output is reduced to the desired output size, which is a single
scalar value in Fig. 2.12. The final output, denoted by ŷ, is obtained through a
linear transformation, as shown in Eq. 2.11. This output can optionally be passed
through an activation function, depending on the task.

ŷ = w(L+1)h(L) + b(L+1) (2.11)

Here, L is the index of the last hidden layer.

Various activation functions, g(·), are available, each suitable for different types of
problems. The rectified linear unit (ReLU) is a commonly used activation function
in deep learning [36]. Table 2.1 presents the definition of ReLU along with several
other popular activation functions commonly used to enhance the computational
capabilities of DL models [37]. Φ(z) in the second row of Table 2.1 refers to the
cumulative distribution function for a Gaussian distribution. The input, z, to the
activation functions is the raw output from a layer before the activation function is
applied,

17

2. Theory

Activation function Equation

ELU ELU(z) =

z if z > 0
α (ez − 1) if z ≤ 0

GeLU GeLU(z) = z · Φ(z)

Leaky ReLU LReLU(z) =

z if z > 0
αz if z ≤ 0

ReLU ReLU(z) = max(0, z)
Sigmoid σ(z) = 1

1+e−z

Softmax Softmax(zi) = ezi∑
j=1 ezj

Tanh tanh(z) = ez−e−z

ez+e−z

Table 2.1: Some activation functions used to improve learning [37], [38].

While activation functions introduce non-linearity and enable neural networks to
learn complex patterns, other techniques address additional challenges during train-
ing. One such challenge is overfitting to the training data. Dropout is a regular-
ization technique that mitigates overfitting in deep neural networks by randomly
deactivating units during training [39]. This prevents the model from becoming
overly reliant on specific neurons, encouraging them to learn features independently
and reducing co-adaptation. At test time, the full network is used, with outputs
scaled to approximate the behavior of the many smaller sub-networks seen during
training. This improves generalization to unseen data.

Another challenge for neural networks is the shifting distribution of layer inputs
as the network trains, known as internal covariate shift [40]. Batch Normalization
was introduced to mitigate this problem by normalizing the inputs to each layer
within each mini-batch. The method improves training stability and speed, allows
for higher learning rates, and reduces sensitivity to weight initialization. It can also
reduce the need for regularization techniques such as dropout [40].

With deep learning, one challenge is that information can degrade as it propagates
through many layers [41]. Residual connections address the challenge of training
very deep neural networks by reformulating the learning objective. Instead of learn-
ing a direct mapping, each layer learns a residual function relative to its input,
representing the difference between the desired output and the input. This struc-
ture improves gradient flow, making optimization easier and enabling the training
of significantly deeper models. In practice, a portion of the input bypasses interme-
diate layers and is directly added to the output. This skip connection helps preserve
important features from earlier layers and mitigates information loss.

2.4.6 Recurrent Neural Network
Recurrent neural networks extend feedforward architectures by introducing recurrent
connections, allowing them to capture dependencies across time steps in sequential

18

2. Theory

data [42]. These recurrent connections link a layer back to itself, enabling informa-
tion to flow from previous hidden states to the current state. This information flow
is illustrated in Fig. 2.13, where the dashed edges represent connections between a
node and its states at adjacent time steps.

x1

x2

x3

H1

H2

H3

H4

O

Input Layer

Hidden Layer (Recurrent)

Output Layer

Figure 2.13: Example of recurrent neural network with a single hidden layer and
dashed recurrent connections

The forward pass can be computed as shown in Eq. 2.12, where ht is the hidden
state at time t, Wx is the input weight matrix, xt is the input vector, and Wh and
bh are the recurrent weight matrix and bias vector, respectively. The function σ
denotes the sigmoid activation function, as defined in Table 2.1.

In Fig. 2.13, the input vector xt consists of three features. The input weight matrix
Wx contains the weights associated with the connections between the input features
x1, x2, x3 and the four neurons H1, H2, H3, and H4. The recurrent weight matrix Wh

and the recurrent bias vector bh correspond to the recurrent connections between
each neuron and its previous state, as illustrated in Fig. 2.13.

ht = σ(Wxxt + Whht−1 + bh) (2.12)

This forward pass differs slightly from the one described in Eq. 2.9 in the previous
section.

2.4.7 Long Short Term Memory
Long short term memory (LSTM) is a special case of its predecessor RNN [43]. The
structure was created to address the exploding/vanishing gradients problem [44].
Vanishing gradients occur when gradients become too small during backpropaga-
tion, making it difficult for the network to learn. This issue is common in time

19

2. Theory

series models, which often rely on deep architectures. LSTM solved this problem by
introducing a memory cell that stores information over time. The memory cell con-
sists of an input gate and output gate. The LSTM also contains a forget gate which
provides the ability to reset its state. The forget gates decides what information
should be kept or removed from the memory cell [45]. The input gate controls what
information should be used to update recent block states. The output gates decides
the prediction based on the current block state. The architecture of the LSTM can
be seen in Fig. 2.14.

Figure 2.14: LSTM Architecture [44]

2.4.8 Convolutional Neural Network
One of the first highly successful Convolutional Neural Networks (CNNs) was intro-
duced in 1995 [46]. CNNs are commonly used in image processing and recognition
tasks due to their ability to extract spatial hierarchies of features. Their architecture
is particularly adept at identifying contextual information, which helps overcome the
limitations of pixel-wise comparisons in image analysis [47]. Another notable advan-
tage of CNNs, especially in the context of radio efficiency, is that their architecture
can be efficiently implemented in hardware [46].

CNN architectures are typically constructed by stacking three main types of layers:
convolutional, pooling, and fully connected layers [48]. The convolutional layer
performs element-wise multiplications between a learnable weight matrix, known as
a kernel, and local regions of the input. Pooling layers reduce the spatial dimensions
of the data by downsampling, helping to control overfitting and reduce computation.
Finally, fully connected layers map the learned features to the output space [48].

The convolution operation in the 2D case is illustrated in Fig. 2.15, where a kernel
slides across the input matrix and performs weighted summations.

20

2. Theory

Figure 2.15: Kernel functionality in a 2D convolutional layer [48].

Convolutional layers are controlled by several hyperparameters that affect the di-
mensions of the input and output. As with any neural network, it is important to
understand how each layer transforms the data. This becomes particularly crucial
for CNNs, where valid values for certain hyperparameters often depend on others.
Further details are provided in Section 3.6.2.

2.4.9 Temporal Fusion Transformer
Temporal fusion transformer (TFT) is a specialized version of transformers created
for time series data. A key characteristic of the TFT model is that it outputs quan-
tiles instead of just one prediction, this can be helpful depending on the application,
as it indicates how confident the model is of its output [49]. The output for each
quantile is calculated in Eq. 2.13 where τ represents the forecasting horizon, k the
look-back period, yi,t−k:t previous target values, zi,t−k:t unknown inputs and xi,t−k:t+τ

known inputs. The standard loss function that is minimized during training is the
joint quantile loss over all quantiles [49].

ŷ(q, t, τ) = fq(τ, yi,t−k:t, zi,t−k:t, xi,t−k:t+τ , si) (2.13)

The TFT can differentiate between different types of data [49]. Fig. 2.16 demon-
strates how the input data is divided into three different categories; static metadata,
time-varying past inputs and time-varying known future inputs. Data from these
categories are handled in different ways, which gives the TFT advantages in lever-
aging information in the input data. For each type of data, a feature selection is
made to filter out the most prominent variables.

The main components of the TFT are LSTM, previous explained in Section 2.4.7,
and Gated Residual Networks (GRN) which is a neural network specifically created
for the TFT [49]. The GRN controls the information flow in the TFT. They contain
gates and skip connections, which makes it possible for the TFT to only apply non-
linear processing when needed. This can reduce complexity for smaller datasets.

21

2. Theory

Figure 2.16: Temporal Fusion Transformer architecture [49].

2.5 Optuna
Optuna is an open-source framework for automatic hyperparameter optimization in
Python. The framework enables utilization of Bayesian methods for guiding the
search for optimal hyperparameters [50]. This means that optimal solutions can be
found quicker than when using random search or grid search.

Optuna offers several different samplers and pruners for the user to chose between [51].
The default sampler is the Tree-structured Parzen Estimator algorithm (TPESam-
pler). The TPESampler fits Gausian Mixture models to the parameters.

2.6 SHAP
SHAP (SHapley Additive exPlanations) is a unified framework for interpreting
model predictions [13]. It was developed to improve interpretability in complex
models by addressing the trade-off between predictive accuracy and transparency.
SHAP uses a model-agnostic approach that applies to a wide range of algorithms,
helping to standardize explainability methods.

SHAP assigns an importance value, called a SHAP value, to each feature for a
specific prediction [13]. These values, grounded in game theory [52], represent each
features contribution to the model output. The explanation of a prediction is treated
as a separate, interpretable approximation of the original modelreferred to as the
explanation model [13].

SHAP values quantify how much a feature changes the prediction when its value is
altered, and they support both local and global interpretability [13].

22

3
Methodology

This chapter begins by providing a high-level overview of the solution in a step-by-
step list in Section 3.1. Section 3.2 provides information about the data creation
in this thesis. Section 3.3 presents background information on the dataset and
highlights key patterns within it. Section 3.4 continues by describing the data pre-
processing made to prepare it for the ML algorithms. Section 3.5 outlines the setup
of the prediction task, Section 3.6 explains the rationale behind the choice of mod-
els, and Section 3.7 details the hyperparameter optimization process. Section 3.8
outlines the modifications made to the test data to simulate high utilization for eval-
uation purposes. Section 3.9 outlines the model evaluation strategy, Section 3.10
explains how the predictions of certain models are made interpretable, and finally,
Section 3.11 introduces the Python libraries used as tools throughout this thesis.

3.1 Solution Architecture
The objective of this thesis is to design a system that dynamically adjusts the voltage
setting in radios based on predicted traffic demands expressed through the target
variable PRB-U. As described in Section 2.1, PRB-U refers to the proportion of
physical resource blocks utilized by the radio’s cell for signal transmission. A high
PRB-U indicates a heavily loaded radio.

As previously described in Section 2.1.2, it is not possible to directly tune the power
of the radio. Instead, the voltage is adjusted to achieve the desired power level. The
dynamic voltage adjustment process is structured into the following steps for each
predictive model:

1. Predict PRB-U based on time series data:

(a) Classification: Directly predict whether the target variable corresponds
to the higher (1) or lower (0) class.

(b) Regression:

i. Predict the exact utilization.

ii. Map the prediction to the higher or lower class as Eq. 3.1.

ŷ =

0, if ŷcontinious < 0.25
1, otherwise

(3.1)

23

3. Methodology

2. Adjust the voltage level according to which level was predicted as:

(a) High level: 0% change

(b) Low level: 50% decrease

3. Deduce energy save from Pin depending on Voltage level as:

(a) High level: 0% change

(b) Low level: 15% decrease

3.2 Data Creation from an ML Perspective
This section describes how the dataset was constructed from raw sensor data col-
lected from five randomly selected radios, all located within the same country.

3.2.1 Data Collection and Sources
The primary dataset was collected from two internal sources and spans from 2025-
01-17 to 2025-03-06, resulting in a total of 23, 520 raw data points. An independent
test set was created using data from 2025-03-08 to 2025-03-22, resulting in 7, 200 raw
instances. The dataset includes both time-series and static features, where the time-
series data consists of 15-minute interval measurements. One of the key time-series
variables is PRB-U, the target variable described in Section 2.1.

3.2.2 Creating Lagged Features
Each input vector was enriched with lagged values from the time-series features using
a sliding window approach, as outlined in Section 2.3.1. The window size, referred
to as the look-back length, was treated as a tunable hyperparameter. To maintain
computational feasibility and ensure coverage of one full day, the maximum window
length was capped at 96 (equivalent to 24 hours).

When generating lagged features, initial data points without sufficient historical
context were discarded. Since the optimal window size varied between models, the
first 96 data points were consistently removed from the training, validation, and test
sets to ensure all datasets had equal lengths across model configurations.

3.2.3 Forecasting Horizon and Target Construction
The forecasting horizon was set to one time step, corresponding to 15 minutes ahead.
This choice was based on the practical consideration that voltage levels can be
changed within roughly one second, and a short prediction horizon simplifies the
learning task. Consequently, the target variable, PRB-U, was shifted forward by
one time step to align with this forecast horizon.

24

3. Methodology

3.2.4 Data Splitting
Following preprocessing and feature construction, which will be explained in Section
3.4, the data was partitioned into training, validation, and test sets. The training
and validation sets were extracted from a single continuous period, with 80% of
the data used for training (18 428 instances after removing the first 96 due to
lag construction) and the remaining 20% for validation (4 125 instances, also after
removing the first 96). The processed test set contains 6 710 instances after the
same adjustment.

The training, validation, and test datasets contain combined data from all five radios,
meaning the models were trained and evaluated on aggregated data without explicit
information about which radio each instance originated from. On a per-radio basis,
this corresponds to approximately 18,428

96×5 ≈ 38.4 days of data per radio in the training
set, 4,125

96×5 ≈ 8.6 days in the validation set, and 6,710
96×5 ≈ 14 days in the test set.

3.2.5 Handling Missing Data
The test dataset contained a small number of missing time steps. These were im-
puted using the most recent available value from the same radio. Table 3.1 lists
the missing timestamps by radio number. Additional feature engineering steps are
described in Section 3.4.

Radio Missing timesteps
1 2025-03-12 08:30, 2025-03-21 12:30, 2025-03-22 00:30, 2025-03-22 01:45
3 2025-03-12 08:45
4 2025-03-12 08:00, 2025-03-12 08:30
5 2025-03-12 08:00, 2025-03-12 08:30, 2025-03-12 09:00

Table 3.1: Missing timesteps in test data per radio.

The training, validation and test data conatains combined data from all five radios.
Meaning, the models were trained on data from all radios without an identification
of which radio was whitch.

3.3 Data Inspection
In this section, the data is examined and visualized to determine its characteristics
and patterns. All data visualized in the following sections is data used for training
and validation while the test data remains untouched.

3.3.1 Imbalance in Target
First, an inspection of the target variable PRB-U ’s distribution was performed. As
shown in Table 3.2, the dataset exhibits class imbalance, with the negative class
consistently underrepresented across all splits. A negative class instance is one in

25

3. Methodology

the lower voltage category, and a positive instance is one in the higher. This overall
low utilization is further confirmed by the histograms in Fig. 3.1, which display the
target distribution for radios 1 and 2. The left plots show the distribution including
sleep mode, where utilization is actively set to zero during nighttime hours, while
the right plots exclude data from sleep mode hours. Both indicate generally low
utilization and consequently a significant potential for energy savings beyond the
current night mode setting. The plots assume sleep mode is active from 00:00 to
05:00, during which utilization is zero. Histograms for the other radios are provided
in Appendix A.

Figure 3.1: Histograms of the target variable PRB-U with and without sleep mode
for radios 1 and 2.

Data Set Positive Negative Negative to Positive
Training 158 18 272 116:1

Validation 66 4 059 62:1
Test 68 6 642 98:1

Table 3.2: Class distribution in each data set.

3.3.2 Seasonality
All correlation measurements in this section use the Pearson correlation and is cal-
culated as shown in Eq. 3.2, where PRBt,i denotes the PRB-U measured t time
steps prior to the current value. A correlation above 0.7 is often considered strong,

26

3. Methodology

between 0.6 and 0.4 is considered to be moderate by many fields while a correlation
below 0.3 is weaker [53].

Corr(PRB, PRBt) =
∑n

i=1(PRBi − ¯PRB)(PRBt,i − ¯PRBt,i)√∑n
i=1(PRBi − ¯PRBi)2

√∑n
i=1(PRBt,i − ¯PRBt,i)2

(3.2)

As outlined in Section 1, this thesis utilizes time series data as the foundation for
building its machine learning models. Fig. 3.2 show the correlation between the tar-
get variable, PRB-U in the next time step, and the previous values. This heatmap
illustrates the relevance of past utilization values in predicting the target variable.
It highlights a reduced importance for intermediate time lags and an increased rele-
vance as the lag approaches 24 hours, suggesting a seasonal pattern with a 24-hour
cycle. An almost identical correlation pattern can be seen for the other lag variable
mean power consumption. The exact plot can be seen in Appendix A.

Figure 3.2: Correlation between the target variable and the investigated lags.

Fig. 3.3 provides an overview of the weekly and daily patterns of PRB-U across
the radios with a mean of the target variable. All units show zero utilization from
11 p.m. until approximately 5 a.m., indicating that the radios are configured with
sleep mode enabled. Another notable observation is the overall utilization level. The
maximum average utilization across the five radios is approximately 12%, suggesting
generally low utilization throughout the analyzed period.

27

3. Methodology

Figure 3.3: Heatmap of average PRB-U over weekday and time of day.

Furthermore, the target variables of the radios are correlated, as shown in Fig. 3.4.
Radios 2 and 3, 2 and 4, as well as 3 and 4, exhibit stronger correlations, suggesting
that the target patterns of one can provide informative signals for the others. In
contrast, radio 5 shows lower similarity to the others, as indicated by the bottom
row of Fig. 3.4, which reflects its weaker correlations with the rest.

Figure 3.4: Heatmap of the correlation between radios’ PRB-U.

Inspecting the heatmaps of mean PRB-U per weekday and time on a one radio level
gives a more detailed view of the utilization patterns, as Fig. 3.3 reveals that each ra-
dio exhibits distinct utilization patterns. Radios 2 and 4, which show relatively high
correlation in Fig. 3.4, also display similar patterns in their respective heatmaps in

28

3. Methodology

Fig. 3.5. Notably, both radios maintain a consistent 0% utilization during nighttime
hours, indicating that their sleep mode settings are activated at the same times.

Figure 3.5: The target variable over weekday and time of day for radio 2 and 4.

Furthermore, comparing the heatmap to the PRB-U curve of each radio strengthens
the same understanding of the pattern. The heatmap previously shown in Fig. 3.5
is reflected in the curve of PRB-U for the two units in Fig. 3.6. Radio 2 is mostly
active during mid-day as is radio 4 though it has lower utilization on weekends.
This lower utilization during weekends is clear in day 3 (2025-01-19) and the last
day (2025-01-26) of Fig. 3.6 which are both Sundays and had the lowest overall
utilization in Fig. 3.5.

29

3. Methodology

Figure 3.6: PRB-U patterns for radio 2 and 4.

The heatmap in Fig. 3.7 gives an overview of the pattern of radio 5, showing distinct
differences from the previous heatmaps of radio 2 and 4 in Fig. 3.5. There is less
utilization mid-day and more towards the evenings.

Figure 3.7: The target variable over weekday and time of day for radio 5.

30

3. Methodology

The previous heatmap, Fig. 3.7, indicated that radio 5 has higher utilization during
Wednesdays and Thursdays, which is reflected in the curve of PRB-U for radio 5 in
Fig. 3.8. The two most significant peaks occur on a Wednesday and Thursday, one
on 2025-01-22 which is a Wednesday and another on 2025-01-23 which is a Thursday.

Figure 3.8: PRB-U pattern for radio 5.

3.4 Feature Engineering
The data is mainly collected through sensors and is kept on servers at Ericsson.
Data was pulled from two internal sources which resulted in the following list of
available features; serialNumber : which radio the data belongs to, timestamp: the
date and time of the measurement, PowerConsumption an array power consumed
every 6 seconds where every array contained 150 values, MinPowerConsumption was
the lowest value in the PowerConsumption array while MaxPowerConsumption is
its maximum value. The feature PRB-U is the target variable and is measured as
the average utilization during the 15 minute interval, voltage is an array of voltages
measured every 6 seconds and current is an array of current measurements every 6
seconds. The PowerConsumption array contained some missing entries which were
addressed by forward-filling, assuming the last observed measurement remained valid
until a new value was recorded.

The feature Current was excluded from the analysis to avoid multicollinearity, as
it was found to be highly correlated with Power. The relationship between current
and power is described is P = U ∗ I, where U denotes the voltage and I the current.
Since all radios operate with static voltage, any variation in power (P) directly
corresponds to changes in current (I). Additionally, Voltage was removed from the
dataset, as it is theoretically static and, in practice, exhibits very low variance both
within and across the analyzed radios.

There were mainly two preprocessing actions taken. First, the mean and median val-
ues are calculated from the six-second interval sensor data for power measurements.
Second, three features were extracted from the timestamp and were processed to
contain their cyclic nature. A challenge in ML is that the raw data does not al-
ways accurately reflect its state. Time data serves as a typical example, where,
for instance, hour 23:00 and hour 01:00 are numerically distant but conceptually

31

3. Methodology

close. Without appropriate preprocessing, such cyclic relationships remain unclear
to many ML models. One strategy to address this issue is to transform the data
using sine and cosine functions, as shown in Eq. 3.3. This transformation captures
the underlying cyclic behavior of the variable. The divisor in the sine and cosine
expressions represents the maximum value of the variable. For example, 24 for hours
and 7 for weekdays. x in Eq. 3.3 denotes the variable.

xcos = cos
(

2π
x

max(x)

)
, xsin = sin

(
2π

x

max(x)

)
(3.3)

Fig. 3.9 illustrates the correlations between the features and the target variable,
PRB-U at the subsequent time step. The bottom row of the figure shows the abso-
lute correlation values between each feature and all other variables in the dataset.

Figure 3.9: Correlation matrix of the features and the target variable.

Table 3.3 shows the full list of included features. The features maxPowerConsump-
tion, minPowerConsumption, and medianPowerConsumption, along with the sinu-
soidal and cosine-transformed versions of weekday, hour, and minute, are treated
as non-temporal data, meaning no lagged versions of these variables are included.
In contrast, meanPowerConsumption is incorporated with lagged values, where the
specific lag is determined through hyperparameter optimization.

All features in Table 3.3 were kept in the dataset for all models, despite the corre-
lation matrix in Fig. 3.9 suggesting that some had weak individual correlation with
the target variable. Specifically, the minute and weekday features were considered
for removal. However, such features may still contribute through interactions with

32

3. Methodology

other variables or capture temporal patterns not reflected in simple pairwise corre-
lations. For example, the minute feature could represent behavioral patterns such
as periodic bus traffic near a radio tower. Moreover, these features may become
more important in future applications involving more fine-grained prediction tasks.
Given the limited total number of features and their potential value, no feature was
excluded.

Feature Description
serial annonimous categorization from 1-5 of

included radios
PRB Utilization Utilization of broadcast abilities every

15 minutes
MaxPowerConsumption max power consumed during 15

minute interval
MinPowerConsumption min power consumed during 15 minute

interval
meanPowerConsumption mean power consumed during 15

minute interval
medianPowerConsumption median power consumed during 15

minute interval
minute_sin sinusodial transformation of minute
minute_cos cosinusodial transformation of minute
hour_sin sinusodial transformation of hour
hour_cos cosinusodial transformation of hour
weekday_sin sinusodial transformation of weekday
weekday_cos cosinusodial transformation of weekday

Table 3.3: Features after data preprocessing.

3.5 Prediction Task Formulation
Following the general objective of the thesis and the examination of data charac-
teristics, this section presents the formulation of the prediction task. In this thesis,
the specific task is to predict the voltage level at the next time step, which can be
framed as either a classification or a regression problem, as discussed in Section 3.1.

In a regression setting, the model aims to predict a continuous PRB-U value which
is then mapped to a voltage level. Performance can be evaluated using metrics
such as the mean squared error (MSE), which measures how close the predicted
values are to the actual ones. This formulation allows for evaluating how well the
model captures the underlying dynamics of the data. Alternatively, the task can
be formulated as a binary classification problem, where the objective is to predict
whether the voltage level will be high or low. In the context of this study, since the
voltage only takes on two discrete levels, the exact numerical value is less important.
Thus, it is reasonable to argue that, in this case, the primary concern is the correct
classification of the voltage level, rather than the precise numeric deviation.

33

3. Methodology

On the other hand, using a regression formulation provides continuous-valued feed-
back, which may allow the model to capture subtle variations and trends in the data
that are not reflected in a binary classification. In addition, regression outputs can
be easier to interpret visually, as predicted values can be directly compared to true
values in a plot to observe deviations over time.

Given the respective advantages of both approaches, the prediction task was for-
mulated in two ways: as a regression task and as a classification task. This dual
formulation enables a direct comparison of model performance under different learn-
ing objectives and evaluation metrics.

To compare model behavior under these learning objectives, the regression task was
evaluated using both MSE and F1 score, while the classification task was evaluated
using F1 score alone. These two scores are explained in detail in Section 3.9, and
the rationale and implementation of this dual-objective tuning strategy are discussed
further in Section 3.7.

3.6 Included Models and Their Optimization
This section presents the models selected to address the prediction task introduced
in the previous section. A diverse set of models was considered to enable a com-
parative evaluation of different methodological approaches with distinct strengths
and assumptions. The selected models are described in the following subsection,
followed by a detailed explanation of the custom-designed hybrid models.

3.6.1 Model Selection
Models were selected to reflect a range of fundamentally different algorithmic strate-
gies. Since the target deployment environment, being radio stations, has limited
computational resources, particular emphasis was placed on including a set of less
complex, statistical models. If these models performed comparably to more com-
plex alternatives, they would be preferred due to their lower inference cost. For this
purpose, Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient
Boosting (XGB), and K-Nearest Neighbors (KNN) were selected. These models
were included to evaluate whether simpler, well-established techniques could offer
competitive predictive performance while being more suitable for deployment. They
were also selected because they have, in many cases, demonstrated performance
comparable to, or even better than, more complex neural network architectures on
structured prediction tasks. For example, tree-based models such as XGB and RF
have been shown to outperform deep learning models on a variety of medium-sized
tabular datasets [54].

Several neural network architectures were included in addition to the statistical
models. They were included since neural networks have shown competitiveness in
capturing complex and long-term patterns in data [9]. These consisted of a Feedfor-
ward Neural Network (FFNN), a CNN-based model later introduced as HybridCNN,
a LSTM-based model later referred to as HybridLSTM, and the Temporal Fusion

34

3. Methodology

Transformer (TFT). The TFT is specifically designed for time series forecasting
and has shown competitive performance for such tasks [49]. The hybrid models
were specifically designed to process sequential and static features through separate
streams, allowing each input type to be modeled more effectively. These architec-
tures are described in greater detail in the following section.

3.6.2 Model Specifications
The statistical models were implemented using their conventional formulations with-
out any custom architectural modifications. In contrast, the neural network archi-
tectures were adapted to better suit the specific task.

This subsection presents each neural network architecture in detail, along with an
explanation of which structural elements were included as hyperparameters. Certain
layers are conditionally activated based on the hyperparameter configuration. One
such example is the hyperparameter indicating the number of layers introduced in
the HybridLSTM and FFNN. More specific components are illustrated in the figures
using dashed outlines, rather than solid lines. The architectural descriptions begin
with the FFNN model, followed by the HybridLSTM and HybridCNN.

The FFNN architecture is illustrated in Fig. 3.10. The model processes the input
sequentially through three modules: the input module, one or more hidden modules,
and the output module. The input module consists of a linear layer, followed by
batch normalization, an activation function, and dropout. Batch normalization was
included to improve stability during training, and dropout to prevent overfitting,
as described in Section 2.4.5. Dropout was treated as a tunable hyperparameter,
with values ranging from 0 to 0.5, allowing the optimization process to determine
whether regularization was beneficial and, if so, to what extent. In contrast, batch
normalization was not treated as a hyperparameter; it was consistently included in
all configurations. This decision was based on initial manual experiments, which
indicated improved performance when batch normalization was applied. To reduce
the complexity of the hyperparameter search space, it was therefore fixed.

Each hidden module in the FFNN is structurally identical to the input module. De-
pending on a hyperparameter setting, residual connections may be included; this is
illustrated by the dotted lines in the figure. Residual connections were considered
due to their potential to improve the training of deep models, as explained in Sec-
tion 2.4.5. The FFNN architecture allows for up to four stacked hidden layers-which
does not constitute an exceptionally deep network-the inclusion of residual connec-
tions was made configurable to assess whether they could still provide benefits in
this context.

The final component of the FFNN, the output module, comprises a linear layer,
optionally followed by a sigmoid activation function. For the binary classification
task, the sigmoid activation was used to ensure the outputs represented class prob-
abilities for the positive class. In contrast, for the regression task, the inclusion of
the sigmoid activation was treated as a tunable hyperparameter.

While sigmoid functions are standard in classification tasks due to their probabilistic

35

3. Methodology

interpretation, they are not typically used in regression settings, where unbounded
outputs are often required. However, in this work, the regression task involved target
values constrained to the [0,1] interval, motivating the consideration of the sigmoid
activation. Preliminary experiments indicated that, without the sigmoid function as
a bounding mechanism, the model occasionally produced outputs outside the valid
range. Introducing a sigmoid function mitigated this issue but introduced its own
limitations: values already within the valid range could be non-linearly distorted.
For example, a raw model output of 0 would be mapped to 0.5 after applying the
sigmoid, potentially degrading prediction quality. Due to these trade-offs, the use
of sigmoid activation in the regression task was included as a tunable design choice.

H
id

de
n

M
od

ul
e

Input

Linear

BatchNorm

Activation

Dropout

In
pu

t
M

od
ul

e

Linear

BatchNorm

+

Activation

Dropout

Residual Connection

Linear

Sigmoid

Model OutputO
ut

pu
t

M
od

ul
e

Figure 3.10: FFNN architecture with Stacked Hidden Layers.

36

3. Methodology

The subsequent custom model is the HybridLSTM architecture. Given that LSTM
networks are a type of RNN, thereby capable of capturing temporal dependencies
in sequential data, as outlined in Section 2.4.6, the input was partitioned into two
distinct streams: one comprising sequential features and the other static features.
This design choice is motivated by the assumption that the temporal evolution of
sequential features may contain valuable information relevant to the prediction task,
whereas static features lack such temporal characteristics.

The architecture, illustrated in Fig. 3.11, is composed of three principal components:
an LSTM module processing the sequential input, a static module that applies linear
transformations to the static input, and a concatenation module that combines
the outputs of both streams and generates the final output. The sequential input
includes two time-dependent features, PRB-U and mean power consumption, while
the static input encompasses the non-temporal features described in Section 3.4.

Sequentuial Input

Static Input

LSTM Module

Static Module

Concatenate Module Output

Figure 3.11: HybridLSTM with its modules and input streams.

Fig. 3.12 presents each module in the HybridLSTM in detail. The LSTM module,
shown in part a), consists of two LSTM blocks. The first block contains between
one and four stacked LSTM layers. As part of the hyperparameter optimization,
the dropout rate was treated as a tunable parameter to determine whether dropout
should be applied between the stacked layers, following the same approach as in the
FFNN architecture.

A residual connection was incorporated to allow the input to bypass the first LSTM
block. This design was motivated by the need to preserve critical information
that might otherwise be diminished through sequential transformations (see Sec-
tion 2.4.5). Initial experiments revealed that the LSTM architecture struggled to
extract meaningful patterns from the data. As a result, several architectural varia-
tions were explored, and the inclusion of residual connections consistently improved
both training stability and predictive performance.

The output from the first LSTM block is combined with the residual connection
and subsequently passed through a batch normalization layer and a ReLU activa-
tion function. As with the residual connection, the inclusion of batch normalization
was motivated by preliminary experiments, which showed improved training stabil-
ity and performance. Depending on the hyperparameter setting, dropout may then
be applied, with values ranging from 0 to 0.5. Finally, a second LSTM block, con-
sisting of a single LSTM layer, is added to further abstract the fused representations
produced by the residual-enhanced output of the first block. The decision to include
this final LSTM layer was also based on early manual experiments, which indicated
performance benefits.

37

3. Methodology

The Static Module, shown in part b), consists of two hidden linear layers with ReLU
activation functions. The two hidden layers do not necessarily have the same dimen-
sionality; their sizes are treated as independent hyperparameters. Dropout may be
applied after the first linear layer, controlled by the same hyperparameter used for
the LSTM module. This choice was made to reduce the number of configurations
explored during hyperparameter optimization.

The final component of the HybridLSTM architecture, the concatenation module,
first concatenates the outputs of the LSTM and Static modules. Batch normaliza-
tion is then applied to the combined representation, followed by optional dropout,
controlled by the same hyperparameter as in the LSTM and Static modules. Finally,
a linear layer transforms the concatenated vector into a single output value.

38

3. Methodology

Sequential input

LSTM Layer 1

Dropout (n > 1)

LSTM Layer 2

Dropout (n > 1)

LSTM Layer 3

L
ST

M
B

lo
ck

1

+
BatchNorm

ReLU

Dropout

LSTM Layer

Sequential Output

Residual

Static Input

Linear

ReLU

Dropout

Linear

ReLU

Static Output

(a) LSTM Module (b) Static Module

Sequential Output Static Output

Concatenation

BatchNorm

Dropout

Linear

Model Output

(c) Concatenation Module

Figure 3.12: Overview of the components of the HybridLSTM architecture.

Next, the HybridCNN neural network is presented. The modules of the network
are connected as shown in Fig. 3.13. CNN layers process time series by convolving
over the interval and performing operations on the input to uncover patterns in
the data. However, unlike the FFNN architecture in Fig. 3.10, CNN layers cannot
simultaneously handle both temporal and non-temporal patterns within the same
input stream. Therefore, the inputs were divided into three separate streams.

In contrast to FFNN and HybridLSTM, the two sequential features were split into
two dedicated streams: one for PRB-U and one for mean power consumption. These
are shown as Input 1 and Input 2 in Fig. 3.13. Separate branches were created to

39

3. Methodology

allow for different hyperparameters in each of the two blocks. Input 3 contains the
non-sequential features such as the hour and day, these non-sequential features were
previously defined in Section 3.4.

Input 1

Input 2

Input 3

CNN Module

CNN Module

Linear Module

Concat Module Output

A
da

pt
iv

e
A

ve
ra

ge
P

oo
l

Figure 3.13: HybridCNN with its modules and input streams.

The HybridCNNs hyperparameter space was carefully constructed, as certain combi-
nations of hyperparameters are invalid for CNN layers. Each sampled hyperparame-
ter combination was checked and, if necessary, modified before the hyperparameter
optimization was carried out using Optuna. These checks occurred at multiple lev-
els. First, kernel sizes were always sampled from a space where the lag defined the
maximum value – ensuring that the kernel size never exceeded the input length.
Second, after the optimizer selected a set of hyperparameters, the resulting output
size of the CNN modules was evaluated. If the output size was smaller than 1, the
stride and kernel size were iteratively reduced by one until the output size became
greater than or equal to 1.

Fig. 3.14 shows the modules of the CNN. (a) shows the architecture of the two
sequential input streams. Each stream goes through a convolutional layer convolving
over the input through a specified kernel size that takes steps to the next convolution
as the hyperparameter stride specifies. The convolutional layer also has the option
to pad the input depending on a specified hyperparameter. The next layer is an
activation function applied to its input. The next layer is max pooling which is a
down sampling operation utilized by sliding a specified window size called kernel
over the input and only keeping the maximum value that it covers in each step.
The next layer is Adaptive Average Pool averages the input to a new specified size
according to an input hyperparameter. The flatten layer changes the size of the
data from (batch_size, channels, length) to (batch_size, channels * length) which
is of importance for CNN layers as they output several feature maps.

The linear module in (b) is a simple stacking of linear layers with an activation
function between. The concatenation module in (c) is similar, all data goes through
a layer of adaptive average pool before being concatenated and processed by a linear
layer, an activation function, another linear layer and lastly the sigmoid function.

40

3. Methodology

Sequential Input Stream

Conv1d

Activation

MaxPool1d

Adaptive Average Pool

Flatten

Sequential Output

(a) CNN Module

Static Input Stream

Linear

Activation

Linear

Static Output

(b) Linear Module

Sequential Output 1 Sequential Output 2 Static Output

Linear

Activation

Linear

Sigmoid

Model Output

(c) Concatenation Module

Figure 3.14: Overview of the components of the HybridCNN architecture.

The TFT neural network was implemented using the PyTorch Forecasting library
later mentioned in Section 3.11. The library simplifies the configuration and tuning
of various components of the TFT architecture, including the number of LSTM lay-
ers, the use of dropout, and whether to share a variable selection network between the
encoder and decoder. These settings were included in the hyperparameter optimiza-
tion process. The PyTorch Forecasting library also provides a TimeSeriesDataSet
class, which was used to structure the data for training the TFT. This interface
simplified the tuning of additional parameters such as the lengths of the encoder
and decoder windows.

41

3. Methodology

Sequential and static features are specified separately at model definition, and the
library internally handles the separation of input streams. As a result, only minimal
adjustments to the data and task setup were required, while still allowing the model
to process sequential and static inputs through distinct streams.

3.7 Hyperparameter Tuning
A hyperparameter tuning pipeline was created for the selected models. All models
were tuned using the Optuna framework, as detailed in Section 2.5. Optuna was cho-
sen due to its ability to efficiently explore the hyperparameter space using advanced
optimization techniques. Compared to traditional grid or random search, Optuna
uses smarter search strategy such as Bayesian search methods [50].

Hyperparameter tuning was conducted separately for the regression and classifica-
tion formulations. For the regression task, a standard approach is to evaluate model
performance using MSE to compare how close to the true values the predictions
are. However, selecting the best configuration based only on MSE may not yield the
most effective model for the specific objective of switching voltage levels between
two settings. While the model with the lowest MSE may capture the underlying
patterns in the data most accurately, it does not necessarily optimize for the desired
switching behavior between two levels.

To account for both general predictive performance and task-specific accuracy, hy-
perparameter tuning for the regression task was conducted in two distinct ways. In
the first approach, performance was evaluated directly as a regression task using
MSE. In the second approach, the continuous regression outputs were mapped to
their corresponding voltage levels as explained in Section 3.1, and performance was
evaluated as a binary classification task.

To evaluate the binary switching behavior, accuracy might initially appear to be an
appropriate metric. However, as discussed in Section 3.3.1, the target distribution
is highly imbalanced. To avoid favoring model configurations that predominantly
predict the majority class, the F1 score was used as the evaluation metric for the
binary setting.

This led to three separate settings for hyperparameter tuning:

1. Regression tuned using MSE

2. Regression tuned using F1 score (after thresholding)

3. Classification tuned using F1 score

3.7.1 Training specifications
For the binary classification task, class imbalance is addressed by computing a pos-
itive class weight, which is used with the internal loss function binary cross-entropy
loss. For the regression task, models are trained using their respective default loss

42

3. Methodology

functions: MSE for RF and XGB, epsilon-insensitive loss for SVR, neighbor averag-
ing for KNR, and quantile loss with nine quantiles for the TFT. The custom neural
networks use MSE as their internal loss function for the regression setting.

For the neural models, the number of training epochs was fixed based on preliminary
analysis of training and validation loss curves from an FFNN model with standard
hyperparameter values trained on the regression task for 200 epochs. As shown in
Fig. 3.15, both the training and validation losses plateau after approximately 125
epochs. Consequently, the number of epochs was set to 125 for all neural network
models in order to reduce the size of the hyperparameter search space. The y-axis
in Fig. 3.15 is displayed on a logarithmic scale to improve readability. Without
log-scaling, the large loss reduction in the initial epochs would dominate the plot,
making it difficult to observe the smaller improvements in later epochs.

Figure 3.15: Training and validation loss for FFNN with log scaled y-axis.

3.7.2 Tuning specifications
A modular pipeline was developed to facilitate hyperparameter tuning using the
Optuna library. This pipeline consists of three main components: (1) definition of
search spaces, (2) an objective class that encapsulates training and evaluation logic,
and (3) a tuning loop that manages execution and storage.

Hyperparameters are defined through predefined functions that take the Optuna
trial object as input and return model-specific and shared parameters. For exam-
ple, neural models use a shared search space function for common hyperparameters
such as the learning rate, gradient clipping, scaler, and lag, but also has their own

43

3. Methodology

for model specific hyperparameters. The full list of hyperparameters per model is
demonstrated in Appendix B.

The core logic is implemented within an Objective class that overloads the __call__
method. The objective class is called for each trial in the tuning loop. Within the
Objective call function, the input data is lagged according to the suggested lag_value
and transformed into binary targets if needed. The model is then constructed using
the suggested hyperparameters and trained on the provided data. After training,
predictions are evaluated on the test set using the F1 score or MSE depending on the
current task formulation. This score is returned by the call function to the Optuna
study.

The tuning loop defines the study using the TPESampler and MedianPruner, and
manages storage through a local SQLite database. Completed trials are tracked, and
tuning is resumed if the desired number of successful trials has not been reached.
Results are exported to CSV for later analysis. Each model–task combination was
tuned using 100 trials, which aligns with the minimum number of trials recommended
when using the TPESampler [55]. All search spaces are specified in Appendix B.

3.7.3 Hyperparameter Analysis
Following the tuning phase, the results from all 100 trials for each model were saved
as CSV files. Each row in these CSV file make up one trial and consists of the score
of the trial (either F1 score or MSE) and the hyperparameter configuration used.
These files were used to analyze the influence of various hyperparameters on model
performance. A central focus of the analysis was the lag length.

The analysis was carried out in multiple ways. First, a RF was fitted on each tuning-
results file to gain deeper insights into the influence of specific hyperparameters.
For each tuned model, an RF was trained using the trial data: the hyperparameter
configurations served as input features (x), and the corresponding tuning scores
(e.g., F1 or MSE) were used as the target variable (y). The fitted RF approximates
the relationship between the hyperparameter space and model performance.

SHAP values were then computed for the RF to assess the contribution of a selected
hyperparameter, specifically, lag length. This procedure was repeated for all models,
and the resulting SHAP values for lag were visualized both per model and aggregated
across models within each task and tuning specification (classification or regression,
F1- or MSE-optimized) to identify general patterns and task-specific differences.

In addition to the aggregated analysis, a focused comparison was conducted for
the temporal models, HybridLSTM and TFT. The aim was to investigate whether
incorporating explicit lagged inputs provides meaningful benefits beyond the mod-
els internal temporal mechanisms, as discussed in Section 3.6.2. By analyzing the
SHAP-based importance of lag within the HybridLSTMs tuning results, the extent
to which the model utilizes explicit temporal features, relative to its recurrent archi-
tecture, was assessed.

44

3. Methodology

3.8 Synthetic Data Generation
The trained models were further evaluated on a shifted dataset that corresponds
to a period of higher radio utilization. This modified dataset was constructed to
increase the number of positive class instances, thereby improving class balance and
offering a more generalizable basis for model evaluation. Importantly, this data was
held out during training and used exclusively for testing purposes.

The new dataset was created by modifying the target variable, PRB-U, of the pre-
vious test data, using a change factor (cf). The change factor was set to 2 in
the performed stress test. Input variables were subsequently adjusted according to
their correlations with the target, as previously shown in Fig. 3.9. The correlations
were as follows, corr(PRB-U, MeanPowerConsumption) = 0.86, corr(PRB-U, Max-
PowerConsumption) = 0.82, corr(PRB-U, MinPowerConsumption) = 0.72. This
transformation is intended to simulate a busier period for the radios. The specific
changes applied were as follows:

1. PRB − Unew = PRB − U ∗ cf

2. MeanPowerConsumptionnew = MeanPowerConsumption ∗ cf ∗ 0.86

3. MaxPowerConsumptionnew = MaxPowerConsumption ∗ cf ∗ 0.82

4. MinPowerConsumptionnew = MinPowerConsumption ∗ cf ∗ 0.72

Furthermore, the power consumption variables were restricted to a maximum value
of 600 and PRB-U to 1 as these are their boundaries. The periods of sleep mode
remained unaffected by the shifts as PRB-U is set to 0 during those times.

3.9 Evaluation
While the previous Section focused on optimizing models using standard metrics
MSE and F1 score, this Section presents additional strategies used to evaluate the
resulting best-performing configurations in the context of dynamically switching
voltage levels in radios. In addition to reporting MSE and F1 score, the evaluation
includes task-specific analyses designed to better capture practical performance in
a deployment setting.

An important emphasis is put on the asymmetry in under- and overestimating the
target variable. An underestimation of PRB-U, i.e. a false negative, results in
the voltage being set too low, which may cause temporary issues for connected
users. Conversely, overestimating utilization leads to unnecessary energy consump-
tion. Therefore, under prediction and over prediction of power have two distinct
consequences.

3.9.1 Metrics
The two main metrics for model evaluation are percent energy saving and under
estimations. The percentage energy save is calculated as the fraction of the cur-

45

3. Methodology

rent integral of power and the change in Pin occurring from the change in voltage.
The ideal case would maximize the energy saving in Eq. 3.4, while minimizing the
amount of underpredictions in Eq. 3.5. Pin static refers to the power (W) with no
change depending on utilization while Pin dynamic is the adjusted power depending
on utilization. ŷ in Eq. 3.5 is the predicted target variable, the metric counts the
times the predicted is below the true value y. The variables t1 and t2 refer to a
specified time interval.

Esaved =
∫ t2

t1 Pin static − Pin dynamic∫ t2
t1 Pin static

∗ 100% (3.4)

Underestimations =
t2∑

i=t1
1{ŷi<yi} (3.5)

The metrics above were implemented as it would be problematic to only measure
the models by mean squared error (MSE) because an over prediction and under
prediction have different consequences. An over prediction resulting in energy waste
while an under prediction leads to problems in radio performance. MSE, defined
in Eq. 3.6, does not account for any difference between over- and under-predictions.
The same issue applies to mean absolute error (MAE), defined in Eq. 3.7.

MSE = 1
n

n∑
i=1

(yi − ŷi)2 (3.6)

MAE = 1
n

n∑
i=1

|yi − ŷi| (3.7)

F1 score is introduced as it evaluates the models ability to make correct positive
predictions while penalizing both over- and under-prediction, making it suitable for
assessing performance in more imbalanced classification tasks. TP (true positives)
refers to instances correctly classified as belonging to the positive class. FP (false
positives) are instances incorrectly classified as positive. FN (false negatives) are
instances that were wrongly classified as negative despite belonging to the positive
class. The metric is defined in Eq. 3.8 [56]. The metric was calculated using the
f1_score metric from Sklearn.metrics [56].

F1 = 2 · TP

2 · TP + FP + FN
(3.8)

Lastly, the energy consumed during prediction for the two best performing models
where calculated. The codecarbon library [57] was used to estimate the energy
consumption in kilowatt-hours (kWh) for these model. This evaluation ensured that
the energy savings achieved by deploying the model exceeded the energy required to
run it. We define the Energy Ratio (RE) for each model as Eq. 3.9. Where Emodel
is the energy consumed by the model and Esavings is the savings of the model from
adapting a dynamic voltage.

46

3. Methodology

RE = Emodel

Esavings
(3.9)

Emodel is the energy consumed by the model during prediction, calculated as the
mean value of 10 runs. Esavings is the total potential energy saved by applying the
model. A lower value of RE indicates greater energy efficiency, with values less than
1 implying net positive energy savings.

Table 3.4 displays optimal values for the classic ML metrics used. The optimal value
for energy saving and underestimations are stated in the result Section as it is based
on the test data set.

Metric Range Optimal

MSE [0, ∞) 0
MAE [0, ∞) 0

F1 [0, 1] 1
Prediction Energy [0, ∞) 0

Table 3.4: Optimal values and ranges for the metrics.

3.9.2 Threshold Tuning
Since underestimations are considered more serious than overestimations in this ap-
plication, an additional analysis was performed to investigate how the number of
underestimations could be minimized by adjusting the decision threshold for predict-
ing class 1. This threshold determines the minimum predicted probability required
for the model to classify a sample as class 1. The analysis also examined how this ad-
justment influenced the amount of energy saved. The aim was to determine whether
certain models were more effective at reducing the number of restarts while still pre-
serving a substantial portion of the energy savings, whereas others might exhibit a
sharper trade-off.

This analysis was conducted for the classification task, where class probabilities are
readily available. The threshold was varied from 0.01 to 0.99, and for each model,
the trade-off between the number of restarts and the corresponding energy savings
was visualized.

3.9.3 Benchmarking Models
A selection of benchmarking models were implemented to evaluate the performance
of more advanced approaches. These baselines served as reference points for com-
parison and specifically for comparing in ML based methods are beneficial in this
specific case, or if cheaper statistical methods could perform as good or better. First,
the naive benchmark [58] assumed that the value at the next time step will be equal
to the value at the current time step, as shown in Eq. 3.10:

47

3. Methodology

xt = xt−1 (3.10)

Second, the mean benchmark [58] predicted the next value as the average of the
previous n values, as shown in Eq. 3.11. The naive mean was implemented for n=1,
..., 96 with 96 as the upper limit corresponding to a full 24-hour period.

xt =
∑n

b=1 xb−1

n
(3.11)

Third, the Autoregressive Integrated Moving Average (ARIMA) model was used.
ARIMA makes predictions by combining past values (AR), past errors (MA), and
differencing to remove non-stationarity (I) [20]. Eq. 3.12 illustrates the ARIMA
model for a stationary time series:

yt = ϕ1yt−1 + ϕ2yt−2 + · · · + ϕpyt−p + ϵt + θ1ϵt−1 + θ2ϵt−2 + · · · + θqϵt−q (3.12)

Where:

• yt is the value of the target variable in the current point in time

• ϕ1, ϕ2, . . . , ϕp are the autoregressive (AR) parameters

• ϵt is the error term at time t

• θ1, θ2, . . . , θq are the moving average (MA) parameters, indicating the depen-
dence on previous errors in forecasting

3.10 Explainability
Explainability techniques were applied to selected models after evaluation, to gain
a deeper understanding of model behavior and decision-making. These methods
provide insight into which input features the models rely on. In addition to guiding
future improvements, this level of transparency can be especially important for users
or stakeholders without a technical background in AI, as it helps them understand
and trust the models decisions.

Two models were selected for the explainability analysis. Given the importance of
computational simplicity and energy efficiency in this application, one model was
chosen from the statistical methods. To enable comparison between fundamentally
different model methods, a neural network-based model was also selected. This al-
lowed for examination of whether the models emphasized similar or different features
when making predictions.

The selected models were models which had achieved the lowest number of restarts
while maintaining acceptable energy savings, since this trade-off constituted the

48

3. Methodology

primary evaluation criterion. The objective was to understand not only which fea-
tures were most influential, but also how different types of models approached the
challenge of minimizing restarts without sacrificing performance.

Shapley Additive exPlanations (SHAP) were used to analyze model explainabil-
ity [13]. For the statistical model, SHAPs TreeExplainer was applied, while the
neural network model was examined using the GradientExplainer. In both cases,
SHAP summary plots were generated to identify the most influential features and
to illustrate how feature values contributes to the models predictions. Additionally,
waterfall plots were created to explain individual predictions. These plots were gen-
erated for one instance of each output type, i.e., True Positive, False Negative, True
Negative, and False Positive, for both models.

3.11 Libraries
The libraries used throughout this thesis are summarized in Table 3.5, along with
their respective application categories and a brief description of how they were used.
These include libraries for implementing machine learning models, hyperparameter
tuning, and visualization.

Library Category Description
Codecarbon Evaluation Used in the evaluation to measure model prediction

kWh intensity [57].
Matplotlib.pyplot Visualization Used to generate all line plots with a consistent tem-

plate [59].
NumPy Numerical comput-

ing
Used for efficient array operations and numerical
computations [60].

Optuna Hyperparameter tun-
ing

Used for automated hyperparameter optimiza-
tion [61] with TPESampler [62] and Median
Pruner [63]

Pandas Data manipulation Used for handling tabular data, preprocessing, and
transforming features [64].

PyTorch Neural networks Used to construct the FFNN, HybridLSTM,
and HybridCNN models using core layers such
as Linear [65], Dropout [66], BatchNorm [67],
LSTM [68], Conv1d [69], and pooling layers
MaxPool1d [70], AdaptiveAvgPool1d [71]

PyTorch Forecasting Time series library Used for implementing the TFT model [72] and
preparing data with the TimeSeriesDataSet class [73].
The library is built on PyTorch Lightning [74] to
simplify time series forecasting.

Scikit-learn Statistical models Used to implement statistical ML models: Ran-
dom Forest [75], XGBoost [29], Support Vector Ma-
chine [76], and K-Nearest Neighbors [77].

Seaborn Visualization Used specifically to visualize heatmaps [78].
SHAP Explainability Used for interpreting model predictions [79]
SKlearn.metrics Evaluation Used to calculate f1 score [56].

Table 3.5: Libraries used and their purposes.

49

3. Methodology

50

4
Results

This chapter presents the results obtained from applying the proposed methodology.
An analysis of lag values across task formulations, and the results from the hyper-
parameter optimization, is presented in Section 4.1. Section 4.2 outlines the perfor-
mance of each model across the three task formulations, over all radios. Section 4.3
presents the performance on a per-radio unit granularity. Section 4.7 evaluates the
energy used per model to perform the predictions. Section 4.5 explores how adjust-
ing the classification threshold can tune the trade-off between underestimations and
energy savings. Section 4.4 assesses model performance in a senario with a higher
number of class 1 instances. Finally, Section 4.6 provides SHAP-based explanations
of the top-performing models identified in the earlier evaluation. Throughout this
chapter, any optimal value in a table column is highlighted in bold.

4.1 Hyperparameter Optimization
Optuna was used for hyperparameter tuning across all ML models. This section
presents the results and insights obtained from the hyperparameter optimization
process. During tuning, models were trained and validated on data aggregated from
all five radios, as described in Section 3.2. The training set was used for model
fitting, while the validation set guided the optimization process.

Hyperparameter tuning was performed for both task formulations: classification
and regression. For the regression task, two optimization strategies were employed,
using either the F1 score or MSE as the objective function. Models optimized with
respect to the F1 score, including both classification and regression models, were
tuned with F1 score as the objective function, whereas regression models optimized
for MSE employed MSE as the tuning objective.

The specific hyperparameters tuned and their respective search ranges are presented
in appendix B. The optimal hyperparameters identified for each model are listed in
Appendix C.

4.1.1 Optimized Lag values
After completing the optimization loop, the optimal lag lengths for each model and
task–tuning formulation were analyzed in greater detail. Table 4.1 shows the lag
values identified by Optuna for each model. On average, the classification models

51

4. Results

exhibited the shortest lag lengths, followed by the regression models optimized with
MSE, and finally the regression models optimized with the F1 score.

Model Lag classification Lag Regression F1 Lag Regression MSE
rf 6 96 96
xgb 79 94 6
knn/r 1 1 1
svm/r 71 96 67
ffnn 5 74 25
lstm 5 22 17
cnn 85 96 95
tft 49 26 43
Average 37.6 63.1 43.8

Table 4.1: Optimal lag per model and Optuna setup.

To further analyze the effect of lag length on model performance, a RF model was
trained on the results from the Optuna tuning process, using the objective scores
as targets. This enabled an approximation of the relationship between hyperpa-
rameters and model performance. Unlike correlation analysis, this method can also
model potential interaction effects, where the influence of lag length on the objective
depends on the values of other hyperparameters. In the classification and F1-tuned
regression tasks, the objective was the F1 score, while in the MSE-tuned regression
task, it was the MSE. Accordingly, SHAP values were computed to assess the relative
importance of the lag feature with respect to these objectives. In the classification
and F1-tuned regression tasks, positive SHAP values indicate a positive contribution
to performance, whereas in the MSE-tuned regression task, lower SHAP values are
favorable. Fig. 4.1 presents the SHAP values for the lag feature across models and
tasks. The relationship between lag length and SHAP values seem to vary across
these models and tasks. For the RF model (top row), a clear pattern is visible: in the
classification task, shorter lag lengths contribute positively to the F1 score; in the
F1-tuned regression task, longer lag lengths are associated with higher SHAP values,
indicating a preference for longer lags; and in the MSE-tuned regression task, longer
lags correspond to negative SHAP values. This suggest that, for the RF, longer
lags were beneficial for both regression tasks and shorter lags were preferred for the
classification task.

This pattern does not generalize across all models. For instance, the KNC/KNR
models (row 4) consistently favor shorter lag values across all tasks. For models that
inherently capture temporal dependencies, such as the HybridLSTM (row 6) and the
TFT (row 8), the SHAP values help to assess whether performance can be further
improved by providing explicit lagged inputs or relying solely on internal memory
mechanisms. In these models, SHAP values display similar trends across tasks: lag
values contribute positively to performance up to a certain threshold, beyond which
their impact becomes detrimental. Specifically, for both the classification and F1-
optimized regression tasks, the HybridLSTM exhibits positive SHAP values up to a

52

4. Results

lag length of approximately 40, while the TFT shows positive contributions up to
l̃ag 20. Beyond these points, SHAP values become negative, indicating that larger
lag inputs reduce performance in terms of F1 score.

In the MSE-optimized regression task, the trend for the HybridLSTM is reversed:
lag values below approximately 20 exhibit negative SHAP values, while larger lag
values yield increasingly positive SHAP values. Since lower MSE is the objective,
positive SHAP values in this context indicate that these lag values negatively impact
model performance. For the TFT, the pattern is less distinct; however, SHAP values
tend to increase with longer lag values.

Fig. 4.2 presents the aggregated SHAP values for lag length across all models,
grouped by tuning specification. The results reveal contrasting trends between the
classification task and the regression task optimized for the F1 score. Specifically,
the classification models tend to assign higher SHAP values to shorter lag lengths,
whereas the F1-optimized regression models exhibit higher SHAP values for longer
lag lengths. In contrast, the MSE-optimized regression models display less distinct
patterns: many lag values have SHAP values close to zero, making it difficult to
discern clear trends within this tuning specification.

53

4. Results

Figure 4.1: SHAP values for lag per model over the three task formulations.54

4. Results

Figure 4.2: Aggregated lag SHAP values for all models over the three task formula-
tions.

4.1.2 Model-Specific Hyperparameters
Certain components of the customized neural network architectures – FFNN, Hy-
bridLSTM, and HybridCNN – were included as hyperparameters in the optimization
loop. For the FFNN model, two key architectural choices were subjected to tuning:
the use of residual connections and the application of a sigmoid activation function
in the regression task.

Fig. 4.3 illustrates the effect of including residual connections, with performance
measured using the F1 score for the classification task and the F1 tuned regression
task, and MSE for the second regression task. The results in Fig. 4.3 suggest that
incorporating residual connections leads to a marginal decrease in F1 score for the
classification task, comparable performance in the first regression task, and a slight
improvement in MSE in the second regression task. Table 4.2 shows the number of
trials were Optuna chose to include and exclude residuals. The statistics indicate
that Optuna systematically favored the exclusion of residual connections in the
classification setting, whereas their inclusion was more frequently selected in the
regression scenarios.

55

4. Results

Figure 4.3: Performance of the FFNN model with and without residual connections.
The y-axis shows the evaluation metric for each task: F1 score for classification and
regression tuned on F1, and MSE for Regression tuned on MSE.

Setup Trials with Residual Total Trials
Classification 4 97
Regression F1 75 100
Regression F1 69 100

Table 4.2: Statistics over residual inclusion for FFNN trials.

Fig. 4.4 illustrates the effect of including a sigmoid activation function. In the clas-
sification task, the sigmoid function was always included, as the model was required
to output class probabilities. In contrast, its inclusion was a tunable hyperparame-
ter in the two regression tasks. The results show that applying a sigmoid activation
function in regression led to reduced performance, shown as a lower F1 score in the
first regression task and a higher MSE in the second. Table 4.3 shows the exact
statistics over number of trials where the sigmoid function was included as a last
layer. The results show that Optuna consistently favored the exclusion of sigmoid
activation for regression tasks, aligning with the observed decrease in performance
when it was included.

56

4. Results

Figure 4.4: Performance of the FFNN model with and without sigmoid. The y-axis
shows the evaluation metric for each task: F1 score for classification and Regression
tuned on F1, and MSE for Regression tuned on MSE.

Setup Trials with Sigmoid Total Trials
Classification 97 97
Regression F1 15 100
Regression F1 32 100

Table 4.3: Statistics over sigmoid inclusion for FFNN trials.

Selected hyperparameters from the best-performing FFNN configurations, as deter-
mined by the Optuna tuning loop, are presented in Table 4.4. Residual connections
were included in both regression models but omitted in the classification model.
The classification model also employed the deepest architecture, with three layers,
while both regression models used a single layer. The sigmoid activation function
was not selected in either regression configuration. Dropout was included in all
configurations.

Hyperparameter Classification Regression F1 Regression MSE
use_residual False True True
use_sigmoid Not tuned False False
dropout 0.3 0.2 0.4
num_layers 3 1 1

Table 4.4: FFNN architectural hyperparameters.

57

4. Results

Table 4.5 presents selected hyperparameter configurations for the optimal HybridL-
STM models. Dropout was included in all configurations except for the classification
model. The number of LSTM layers was two for both the classification model and
the regression model optimized for the F1 score, and three for the regression model
optimized for MSE.

The selected lag values are presented in Table 4.1. The results are consistent with
those shown in Fig. 4.1, indicating that small to medium lag lengths were preferred.

Hyperparameter Classification Regression F1 Regression MSE
params_lstm_dropout 0.0 0.5 0.1
params_lstm_layers 2 2 3

Table 4.5: LSTM architectural hyperparameters and optimal lag values.

4.2 Results on All Radios
Implemented models and benchmark methods were evaluated on the test dataset,
which comprises aggregated data from all five radios. The results presented below
reflect overall model performance on this combined dataset. Evaluation metrics are
defined in Section 3.9. Metrics applied across all models include F1 score, energy
savings, and the number of underestimations (# Underestimations), while regression
models were additionally evaluated using MSE and MAE. Table 4.6 reports the
potential energy savings and number of underestimations under perfect predictions
on the test data, providing an upper bound for model performance. For reference,
the theoretical ideal values for MSE, MAE, and F1 score (0, 0, and 1, respectively)
are listed in Table 3.4.

Metric Range Optimal

Energy Saving [0, 12.83] 12.83
Underestimations [0, 68] 0

Table 4.6: Optimal values and ranges for underestimations and energy saving.

Table 4.7 presents the evaluation results of all ML models and selected baseline
models on the test data. The model names in Table 4.7 include suffixes indicating
the task formulation and tuning objective. Models labeled with _c were trained as
classifiers. Models labeled with _F1_r were trained as regressors and tuned using
the F1 score, while models labeled with _r were also regressors but tuned using
MSE. This notation is used consistently across several result tables.

The full list of 99 implemented baseline models was described in Section 3.9.3; there-
fore, only the top-performing models from the mean baseline group, as defined in
Eq. 3.11, are included in Table 4.7. Naive_mean_48 represents the average over

58

4. Results

the past 48 timesteps and was included because it achieved the highest energy sav-
ings. Naive_mean_3 was selected for having the lowest MSE, and Naive_mean_2
for achieving the highest F1 score. Naive_mean_1, shown in Eq. 3.10, resulted
in the fewest underestimations. Three additional benchmarks (ARIMA, last_week,
last_24h) were included, as motivated in Section 3.9.3.

As shown in Table 4.7, the FFNN classifier achieved the highest F1 score at 0.35 and
recorded the second-lowest number of underestimations. The lowest energy saving
was observed for the TFT classifier, at 11.78%, while all other models saved at least
12.34% of the previously utilized kWh. In contrast, the TFT classifier achieved the
best result in terms of minimizing underestimations. The highest energy savings, at
12.83%, were achieved by the naive_mean_48 benchmark model, closely followed
by the KNR and TFT regression models. However, these models also produced
the maximum possible number of underestimations and an F1 score of 0, effectively
never predicting the positive class correctly.

59

4. Results

Model F1 Score Energy Saving (%) # Underestimations
rf_c 0.29 12.43 42
rf_F1_r 0.15 12.79 62
rf_r 0.18 12.81 61
xgb_c 0.18 12.34 50
xgb_F1_r 0.20 12.76 59
xgb_r 0.19 12.79 60
knc_c 0.10 12.78 64
knr_F1_r 0.13 12.70 61
knr_r 0.00 12.82 68
svc_c 0.16 12.39 53
svr_F1_r 0.28 12.76 55
svr_r 0.03 12.81 67
ffnn_c 0.35 12.41 34
ffnn_F1_r 0.07 12.78 65
ffnn_r 0.03 12.80 67
lstm_c 0.23 12.65 54
lstm_F1_r 0.20 12.75 59
lstm_r 0.03 12.81 67
cnn_c 0.19 12.67 57
cnn_F1_r 0.10 12.78 64
cnn_r 0.06 12.72 65
tft_c 0.20 11.78 31
tft_F1_r 0.16 12.74 60
tft_r 0.00 12.82 68
ARIMA 0.09 12.74 64
naive_last_24 0.13 12.61 59
naive_last_week 0.03 12.66 66
naive_mean_1 0.19 12.60 55
naive_mean_2 0.20 12.67 56
naive_mean_3 0.20 12.70 57
naive_mean_48 0.00 12.83 68

Table 4.7: Evaluation results for all models, including benchmarks and machine
learning methods, on the test dataset.

Fig. 4.5 summarizes two of the three evaluation metrics for each model: percentage
energy saved and number of underestimations. The figure is based on the statistics
presented in Table 4.7. The scatter plot shows a distinct separation between the
classification models and the regression-based approaches.

60

4. Results

Figure 4.5: Scatter summary of all models.

The bar charts in Fig. 4.6 illustrate the performance of the three machine learning
model setups across the three shared evaluation metrics: energy savings, number of
underestimations, and F1 score. The first bar chart in Fig. 4.6, shows a consistent
trend in energy savings across all models. Notably, the only model that fails to
achieve at least 12% energy savings is the TFT classifier.

The second bar chart in Fig. 4.6 highlights a more varied performance in terms
of underestimations. The classifier versions of the models generally perform best,
followed by the regression model selected based on F1 score. In contrast, the regres-
sion model chosen using the more conventional MSE criterion exhibits the weakest
performance.

The third bar chart in Fig. 4.6 illustrates model performance in terms of F1 score
across the different setups, which shows the greatest variation among the three eval-
uation metrics. The figure shows that the classification variant achieves the highest
F1 score in five of the eight model types. The regression variant optimized for
MSE performs the worst in almost all models, except for RF, where it ranks sec-
ond. The regression variant optimized for F1 score generally achieves intermediate
performance.

61

4. Results

Figure 4.6: Grouped bar charts of model performance in energy savings, underesti-
mations and F1 score.

62

4. Results

An additional analysis was conducted on the naive mean benchmarks to examine
the effect of varying the mean window size. Increasing the window size resulted in
both a higher number of underestimations and greater energy savings. Accordingly,
the trade-off between these two metrics was also present in the benchmark results.
This trade-off is depicted in Fig. 4.7.

Figure 4.7: Trade-off between energy savings and underestimations across different
window sizes in baseline models.

The regression models were evaluated on two additional metrics: MSE and MAE.
The results are presented in Table 4.8. The Random Forest regressor selected based
on MSE (row 1) achieved the best performance on both metrics, closely followed by
the same architecture selected based on F1 score (row 2). Additionally, the XGB
model, also based on decision trees, produced comparable results. In contrast, the
TFT model selected using MSE showed the weakest performance on both MSE and
MAE.

63

4. Results

model MSE mae
rf_r 0.00066 0.01407

rf_F1_r 0.00068 0.01428
svr_r 0.00072 0.01451

svr_F1_r 0.00070 0.01506
knr_r 0.00073 0.01494

knr_F1_r 0.00108 0.01762
xgb_r 0.00069 0.01458

xgb_F1_r 0.00070 0.01460
ffnn_r 0.00073 0.01677

ffnn_F1_r 0.00080 0.01730
lstm_r 0.00081 0.01680

lstm_F1_r 0.00085 0.01779
cnn_r 0.00078 0.01628

cnn_F1_r 0.00095 0.02105
tft_r 0.00495 0.05320

tft_F1_r 0.00107 0.02001
ARIMA 0.00107 0.01971

naive_last_24 0.00223 0.02672
naive_last_week 0.00290 0.03479
naive_mean_1 0.00129 0.01945
naive_mean_2 0.00118 0.01936
naive_mean_3 0.00118 0.01988
naive_mean_48 0.00390 0.04822

Table 4.8: Results from regression specific evaluations.

4.3 Results on Individual Radios
Since the five radios differ in their operational patterns, such as the number of
positive class instances and the range of feature values, the performance of each
model was further evaluated on a per-radio basis. This analysis was conducted by
filtering the test data for each individual radio and generating predictions using
the pre-trained models. It is important to note that the models were not retrained
for each radio; they remained trained on the aggregated data from all five radios.
This procedure was solely intended to examine how well the models generalized
to individual radios and to identify any variability in performance across different
devices.

Table 4.9 presents the upper limit of energy savings and the number of positive class
instances (i.e., number of underestimations) for each radio. Tables 4.10 through 4.14
show the evaluation results for all models on a per-radio basis.

Table 4.10 shows the evaluation for radio 1. It is highly imbalanced and only has
three possible underestimations and thus three instances in the positive class. None
of the machine learning or benchmark methods were able to accurately predict any

64

4. Results

Radio Energy Saving # Underestimations
1 12.87 3
2 13.04 30
3 12.75 2
4 13.01 0
5 12.42 33

Table 4.9: Upper range of metrics for each unit.

of these instances. The benchmark models performed comparably to the machine
learning models on this test set. No model demonstrated superior performance;
accordingly, no values are highlighted in bold.

65

4. Results

model F1 Energy Saving # Underestimations
rf_c 0.0 12.84 3

rf_F1 0.0 12.87 3
rf_r 0.0 12.87 3

xgb_c 0.0 12.83 3
xgb_F1 0.0 12.87 3
xgb_r 0.0 12.85 3
knc_c 0.0 12.84 3

knr_F1 0.0 12.86 3
knr_r 0.0 12.87 3
svc_c 0.0 12.81 3

svr_F1 0.0 12.84 3
svr_r 0.0 12.84 3
ffnn_c 0.0 12.73 3

ffnn_F1 0.0 12.87 3
ffnn_r 0.0 12.87 3
lstm_c 0.0 12.87 3

lstm_F1 0.0 12.84 3
lstm_r 0.0 12.87 3
cnn_c 0.00 12.84 3

cnn_F1 0.0 12.84 3
cnn_r 0.0 12.87 3
tft_c 0.0 12.81 3

tft_F1 0.0 12.87 3
tft_r 0.0 12.87 3

arima_r 0.0 12.85 3
naive_mean_1 0.0 12.82 3
naive_mean_2 0.0 12.86 3
naive_mean_3 0.0 12.87 3
naive_mean_48 0.0 12.87 3
naive_last_day 0.0 12.82 3
naive_last_week 0.0 12.86 3

Table 4.10: Full evaluation radio 1.

Table 4.11 presents the evaluation results for radio 2. This dataset contains more
instances of the positive class compared to radio 1. In this case, the machine
learning models outperform the benchmarks in terms of underestimations. The
Naive_mean_48 model achieves the highest energy savings, although this is accom-
panied by the maximum number of underestimations. The second-best performers
in terms of energy savings are two machine learning models: the TFT regressor
optimized for MSE and the KNR model optimized for MSE, both achieving savings
of 13.02%. However, similar to naive_mean_48, neither of these models successfully
predicted any positive class instances. The model achieving the highest energy sav-
ings while also identifying some positive instances is the HybridLSTM optimized for

66

4. Results

MSE, which attained 12.98% savings and correctly predicted 1 out of 30 positive
instances. The second-best in this regard is the Random Forest optimized for MSE,
which achieved 12.96% savings with 28 out of 30 underestimations.

In terms of underestimations, the TFT classifier achieved the best performance with
only 11 underestimations, correctly predicting approximately 60% of the positive
class instances. The FFNN classifier had 15 underestimations and achieved 12.03%
energy savings, compared to 9.81% for the TFT classifier.

model F1 Energy Saving # Underestimations
rf_c 0.21 11.73 18

rf_F1 0.11 12.94 28
rf_r 0.11 12.96 28

xgb_c 0.21 11.47 16
xgb_F1 0.18 12.83 26
xgb_r 0.05 12.89 29
knc_c 0.05 12.91 29

knr_F1 0.08 12.72 28
knr_r 0.0 13.02 30
svc_c 0.18 11.63 19

svr_F1 0.15 12.87 27
svr_r 0.0 12.99 30
ffnn_c 0.31 12.03 15

ffnn_F1 0.05 12.86 29
ffnn_r 0.06 12.95 29
lstm_c 0.19 12.41 23

lstm_F1 0.18 12.84 26
lstm_r 0.06 12.98 29
cnn_c 0.14 12.61 26

cnn_F1 0.05 12.90 29
cnn_r 0.11 12.63 27
tft_c 0.16 9.81 11

tft_F1 0.0 12.85 30
tft_r 0.0 13.02 30

arima_r 0.0 12.80 30
naive_mean_1 0.1 12.57 27
naive_mean_2 0.07 12.61 28
naive_mean_3 0.11 12.67 27
naive_mean_48 0.0 13.04 30
naive_last_day 0.07 12.58 28
naive_last_week 0.04 12.75 29

Table 4.11: Full evaluation radio 2.

Radio 3, similar to radio 1, contains few instances of the positive class-two in total.
None of the ML models or benchmarks successfully predict any of these positive

67

4. Results

instances. Notably, 17 out of 24 ML models achieve the maximum possible energy
saving of 12.75%, as do several of the benchmarks. The results is provided in
Table 4.12.

model F1 Energy Saving # Underestimations
rf_c 0.0 12.70 2

rf_F1 0.0 12.75 2
rf_r 0.0 12.75 2

xgb_c 0.0 12.70 2
xgb_F1 0.0 12.75 2
xgb_r 0.0 12.75 2
knc_c 0.0 12.75 2

knr_F1 0.0 12.73 2
knr_r 0.0 12.75 2
svc_c 0.0 12.67 2

svr_F1 0.0 12.75 2
svr_r 0.0 12.75 2
ffnn_c 0.0 12.70 2

ffnn_F1 0.0 12.75 2
ffnn_r 0.0 12.75 2
lstm_c 0.0 12.75 2

lstm_F1 0.0 12.75 2
lstm_r 0.0 12.75 2
cnn_c 0.0 12.75 2

cnn_F1 0.0 12.75 2
cnn_r 0.0 12.75 2
tft_c 0.0 12.67 2

tft_F1 0.0 12.75 2
tft_r 0.0 12.75 2

arima_r 0.0 12.75 2
naive_mean_1 0.0 12.72 2
naive_mean_2 0.0 12.75 2
naive_mean_3 0.0 12.75 2
naive_mean_48 0.0 12.75 2
naive_last_day 0.0 12.73 2
naive_last_week 0.0 12.75 2

Table 4.12: Full evaluation radio 3.

Table 4.13 presents the results for radio 4, which contains zero instances of the
positive class. Consequently, the voltage can always be set to the lower level. All
benchmark models and ML models, except two configurations, correctly maintain
the voltage at the lower level throughout. This is evidenced by their achieving the
maximum possible energy savings for radio 4, as shown in Table 4.13.

68

4. Results

model F1 Energy Saving # Underestimations
rf_c 0.0 13.01 0

rf_F1 0.0 13.01 0
rf_r 0.0 13.01 0

xgb_c 0.0 13.01 0
xgb_F1 0.0 13.01 0
xgb_r 0.0 13.01 0
knc_c 0.0 13.01 0

knr_F1 0.0 12.99 0
knr_r 0.0 13.01 0
svc_c 0.0 13.01 0

svr_F1 0.0 13.01 0
svr_r 0.0 13.01 0
ffnn_c 0.0 13.01 0

ffnn_F1 0.0 13.01 0
ffnn_r 0.0 13.01 0
lstm_c 0.0 13.01 0

lstm_F1 0.0 13.01 0
lstm_r 0.0 13.01 0
cnn_c 0.0 13.01 0

cnn_F1 0.0 13.01 0
cnn_r 0.0 13.01 0
tft_c 0.0 12.92 0

tft_F1 0.0 13.01 0
tft_r 0.0 13.01 0

arima_r 0.0 13.01 0
naive_mean_1 0.0 13.01 0
naive_mean_2 0.0 13.01 0
naive_mean_3 0.0 13.01 0
naive_mean_48 0.0 13.01 0
naive_last_day 0.0 13.01 0
naive_last_week 0.0 13.01 0

Table 4.13: Full evaluation radio 4.

Lastly, Table 4.14 presents the results for radio 5, which has a similar proportion
of positive instances as radio 2 (see Table 4.11). Several machine learning models,
including the RF and XGB optimized for MSE, achieve the maximum possible en-
ergy savings of 12.42% while also correctly predicting some of the higher-utilization
instances. The FFNN classifier demonstrates the best performance in terms of un-
derestimations, closely followed by the TFT classifier. However, the FFNN classifier
outperforms the TFT classifier across all evaluation metrics.

69

4. Results

model F1 Energy Saving # Underestimations
rf_c 0.47 12.12 19

rf_F1 0.21 12.37 29
rf_r 0.26 12.42 28

xgb_c 0.14 12.02 29
xgb_F1 0.24 12.33 28
xgb_r 0.35 12.42 26
knc_c 0.16 12.38 30

knr_F1 0.21 12.25 28
knr_r 0.0 12.42 33
svc_c 0.15 12.12 29

svr_F1 0.43 12.35 23
svr_r 0.06 12.40 32
ffnn_c 0.46 11.73 14

ffnn_F1 0.11 12.40 31
ffnn_r 0.0 12.42 33
lstm_c 0.31 12.32 26

lstm_F1 0.24 12.33 28
lstm_r 0.0 12.42 33
cnn_c 0.27 12.19 26

cnn_F1 0.16 12.38 30
cnn_r 0.0 12.42 33
tft_c 0.33 11.40 15

tft_F1 0.31 12.21 25
tft_r 0.0 12.40 33

arima_r 0.19 12.33 29
naive_mean_1 0.3 11.97 23
naive_mean_2 0.36 12.18 23
naive_mean_3 0.31 12.23 25
naive_mean_48 0.0 12.42 33
naive_last_day 0.19 11.97 26
naive_last_week 0.03 11.94 32

Table 4.14: Full evaluation radio 5.

4.4 Generalizability Evaluation
To evaluate the generalizability of the classification models, a synthetic dataset was
constructed as described in Section 4.4. The trained classification models were then
applied to this dataset to assess whether their performance holds in a scenario with
a higher proportion of class 1 instances. This in turn creates a more balanced
data set amongst the two classes. This test serves to examine the resilience of the
models when exposed to data distributions that differ from the original training and
testing conditions. The results are shown in Table 4.15, which summarizes model
performance on the classification task. The dataset contained a total of 747 instances

70

4. Results

belonging to the positive class, meaning there were 747 potential underestimations.

Among all models, the TFT had the lowest number of underestimations, with only
202 out of 747. The FFNN followed with 250 underestimations. Although the TFT
had the fewest restarts, it also resulted in the lowest energy saving. The XGB model
achieved the highest energy saving, but this was due to it consistently predicting
the lower voltage level. Hence, it reached the optimal energy saving at 10.97% but
without ever adjusting for any peaks.

In terms of F1 score, the two naive mean models with the lowest mean values
(naive_mean_2 and naive_mean_3) performed best, each achieving a score of 0.66.
These were closely followed by the HybridLSTM model with a score of 0.643, and
the FFNN with 0.633. Overall, the neural network-based models outperformed
the classical statistical models, with the exception of the HybridCNN. Based on
both F1 score and number of underestimations, the neural networks, together with
naive_mean_2 and naive_mean_3, occupy the top positions, indicating stronger
overall performance on the task.

Model F1 Score Energy Saving (%) # Underestimations
RF 0.46 10.81 509

XGB 0.00 10.97 747
KNC 0.30 10.79 608
SVC 0.02 10.66 736

FFNN 0.63 9.90 250
LSTM 0.64 10.53 339
CNN 0.26 10.94 634
TFT 0.56 8.88 202

ARIMA 0.04 10.94 732
naive_mean_1 0.65 10.1 261
naive_mean_2 0.66 10.22 269
naive_mean_3 0.66 10.21 267
naive_mean_48 0.17 10.09 643
naive_last_day 0.52 9.94 353
naive_last_week 0.38 10.32 515

Table 4.15: F1 score, energy saved, and number of underestimations for each model
at threshold 0.5.

The synthetic data generates a higher number of instances in the positive class,
which also leads to an increased risk of underestimation. Fig. 4.8 illustrates the
performance of all naive mean benchmarks on this data, providing insight into how
the choice of window size affects outcomes. Specifically, a larger window size tends to
result in more underestimations but also yields greater energy savings. Conversely,
a smaller lag reduces the number of underestimations but at the cost of lower energy
savings. The synthetic data gave more nuance to the effect of window for benchmark
compared to that in Fig 4.7 where a smaller window increase yielded a greater change.

71

4. Results

This is seen by Fig. 4.8 having more color nuances than Fig. 4.7.

Figure 4.8: Trade-off between energy savings and underestimations across different
window sizes in baseline models on synthetic data.

4.5 Exploring the Trade-Off Between Energy Sav-
ings and Underestimations

As described in Section 3.9.2, probability predictions from the classification models
were used to illustrate the trade-off between energy savings and underestimations.
This analysis can serve as a basis for adjusting the decision threshold in deployment,
enabling the system to prioritize fewer restarts at the potential expense of reduced
energy savings. Fig. 4.9 shows the resulting curve of each model when shifting the
classification threshold between 0.01 and 0.99. The threshold is indicated by the
color of the dot. The scale of the threshold is shown in the bottom of Fig. 4.9. This
thresholding exercise shows the exact tradeoff between the two metrics for each
model. It indicates that some models are more sensitive to threshold tuning; for
example, the SVC model exhibits a substantial increase in both restarts and energy
savings even with small shifts in the threshold value. The distinct behavior of the
KNC model is explored in more detail in Section 5. The FFNN model demonstrates
the steepest improvement curve with low numbers of restarts, achieving only 5 un-
derestimations at 10% energy saving. FFNN was followed by the HybridLSTM and
RF models. Both models are able to achieve approximately 10% energy savings with
no more than 10 restarts in total.

72

4. Results

Figure 4.9: Model performance trade-offs under varying thresholds. Color encodes
threshold level.

4.6 SHAP-Based Interpretability of Top Models
As explained in Section 2.2, machine learning models often function as black boxes,
making it challenging to interpret the reasoning behind their predictions. To address
this, an additional analysis was conducted to identify which features contributed the
most to the predictions of two selected models. The best performing neural network
and statistical model in terms of number of restarts were chosen for this analysis,
and SHAP was used to interpret their behavior.

The statistical model with the lowest number of restarts was the RF classifier, as
shown in Table 4.7. Therefore, it was selected for further explainability analysis.
For the neural network models, the FFNN classifier was chosen. Although the TFT
slightly outperformed the FFNN in terms of restarts, its energy-saving performance
was significantly lower as can be seen in Table 4.7. As a result, the FFNN was
considered a more balanced choice.

Fig. 4.10 presents the SHAP summary plot for the RF classifier, illustrating the
contribution of each feature to the prediction of class 1. The feature with the greatest

73

4. Results

impact is PRB-U at the current time step (t–0). Lower values of this feature are
associated with negative SHAP values, indicating a reduced likelihood of predicting
class 1, whereas higher values contribute positively, increasing the probability of a
high-level classification.

The subsequent important features are also associated with the current time step,
suggesting that the RF model primarily rely on recent input values. Among the two
sequential features, PRB-U appear more frequently near the top of the importance
ranking, indicating a stronger influence on the models predictions compared to mean-
PowerConsumption. In contrast, static features such as hour, minute, and weekday
show low SHAP values, suggesting that the RF model did not derive significant
benefit from these inputs and instead focuses on short-term temporal patterns.

Figure 4.10: RF SHAP values for class 1.

For the FFNN model, a SHAP summary plot of class 1 predictions is shown in
Fig. 4.11. The plot reveals a strong reliance on PRB-U values at the current time
step (t–0). Low values of this feature negatively impact the model’s output (i.e.,

74

4. Results

the predicted probability of class 1), whereas high values contribute positively. The
remaining features have much smaller SHAP values. Some features exhibit an oppo-
site pattern to PRB-U at t–0. For example, high values of mean power consumption
at t–3 and PRB-U at t–1 are associated with negative SHAP values, while low values
have a positive effect.

Figure 4.11: FFNN SHAP values for class 1.

SHAP explanations were also extracted for individual predictions. Fig. 4.12 shows
SHAP values for positive predictions from both the RF and FFNN models. The
subfigures (a) and (b) illustrate an instance that was correctly classified as class 1,
while (c) and (d) show a positive instance that was incorrectly classified as class
0 (i.e., a false negative). In both cases, the FFNN model places most emphasis
on PRB-U at the current timestep, whereas the RF model focuses primarily on
mean power consumption at the current timestep. For the false negative, the FFNN
assigns only a 19% probability to the positive class, while the RF model is more
confident, assigning a probability of 46%.

75

4. Results

(a) FFNN: True Positive (b) RF: True Positive

(c) FFNN: False Negative (d) RF: False Negative

Figure 4.12: SHAP explanations for positive samples. True positives and false
negatives are shown for both models.

Fig. 4.13 shows SHAP explanations for the negative class. The subfigures (a) and (b)
illustrate correctly classified negative instances, while (c) and (d) show instances that
were mistakenly classified as positive (i.e., false positives). PRB-U at the current
timestep remains the most influential feature for the FFNN in both cases. For the
RF model, PRB-U at the current timestep is the most important feature in the true
negative case, whereas mean power consumption at the current timestep dominates
in the false positive case. For the false positive, the FFNN assigns a high probability
of 83% to the positive class, while the RF model assigns a lower probability of 58%.

76

4. Results

(a) FFNN: True Negative (b) RF: True Negative

(c) FFNN: False Positive (d) RF: False Positive

Figure 4.13: SHAP explanations for negative samples. True negatives and false
positives are shown for both models.

4.7 Model Energy Consumption
Energy consumption was evaluated for the two top-performing models, as motivated
in Section 4.6. As previously laid out in Section 3.9.1, the codecarbon library was
used to measure the energy consumed during inference, and the results are presented
in Table 4.16. As can be seen in the table, the ratio of the consumed energy when
predicting is very small in relation to the saved energy, less than 10−9 for both
models.

Model Classification RE

RF 1.15 ∗ 10−11

FFNN 7.33 ∗ 10−10

Table 4.16: Ratio of energy used for two ML models in regards to saved energy.

77

4. Results

78

5
Discussion

Sections 5.1, 5.2 and 5.3 present the results with each research question in focus.
Section 5.5, discusses the limitations of the findings of this thesis.

5.1 RQ1: Viability of ML-based solutions
The first question examined in this thesis is whether there is use for ML methods in
creating a dynamic voltage setting in radios to save energy. The results presented in
Section 4 demonstrated that there is potential to reduce energy consumption by a
total of 12.83% across the five radios in the test set ranging from 2025-03-08 to 2025-
03-22. On the other hand, this comes with the challenge of not underestimating the
voltage need which would result in connectivity issues for users.

The baseline models, as shown in Table 4.7, achieved energy savings of 12.6% or
more. However, they also produced at least 55 underestimations out of 68 possible
high-demand instances, correctly identifying only about 20% of the positive cases.
This highlights a key limitation: while effective in reducing energy usage, these
models struggle to detect periods of high demand. A notable observation is that
averaging over a larger time window results in a less dynamic model that misses
more positive instances. This outcome is expected, given the unbalanced nature of
the dataset, which is skewed toward the negative class. The pattern is evident in
Fig. 4.7, where lower lag values resulted in fewer underestimations, but also reduced
energy savings.

Section 4.3 highlighted differences in both potential performance and actual model
performance across individual radio units. This raises the question of whether cer-
tain radio units benefit more from machine learning models than others. Table 4.9
presented the optimal energy savings and worst-case number of restarts per unit,
with energy savings ranging from 12.42% to 13.04% and restarts ranging from 0
to 33. Detailed model performance on each individual radio was provided in Ta-
bles 4.10 through 4.14. Radios 1, 3, and 4 contain very few instances in the higher
PRB-U range, whereas radios 2 and 5 have a greater concentration of such instances.
It is likely that other units in the broader population display even more extreme
behaviors, if not consistently, then at least during certain time intervals.

The evaluations on individual radios showed that the benchmark models were highly
competitive with the ML models in terms of energy savings for radios such as 1, 3,

79

5. Discussion

and 4, which contained few instances of the positive class. Conversely, Tables 4.11
and 4.14 showed that radios 2 and 5 benefited more from ML techniques, achieving
higher energy savings while also minimizing the number of underestimations.

Hence, machine learning methods may be beneficial for some, but not all, radio
units when considering a two-voltage level scenario with the lower level set at 50%.
One option would be to employ simpler statistical models, such as the implemented
benchmarks, for radios like 1, 3, and 4, or to operate these radios at a fixed low volt-
age level. However, this approach raises concerns regarding potential changes in the
operational environment. Is it reasonable to assume that past behavior will remain
consistent throughout the entire lifetime of the unit? This is a strong assumption,
and if violated, could lead to degraded performance or suboptimal outcomes for
customers if the voltage requirements of a unit change over time. An alternative
strategy would be to apply basic benchmarking models only to radios that exhibit
a consistently low voltage level.

Although machine learning was found to be relevant for the dynamic voltage scenario
in radios, an important question prior to implementation is how many underestima-
tions are acceptable for a given customer and radio unit. Section 4.5 showed how
decision threshold for the classification models can be shifted to achieve different
positions within the energy save-under estimation trade off. This demonstrated an
easy way to utilize one algorithm, but allow for unit specific preferences and is thus
one way to customize an algorithm per user or environment for each specific radio.

The energy consumed for making predictions, as shown in Table 4.16, was less than
10−9 of the saved energy for the two selected top-performing models. This very
low ratio indicates that the energy savings achieved far outweigh the computational
energy cost of running the models, when considering the net effect in kWh.

It should also be noted that machine learning models, particularly deep learning
models, tend to perform significantly better when trained on larger datasets. The
dataset used for training in this thesis consists of approximately 18 000 instances,
which can be considered medium-sized in the context of structured time-series data.
However, the dataset is highly imbalanced, resulting in few instances of the positive
class. This scarcity may have constrained the models ability to accurately learn
patterns associated with the minority class. Consequently, the ML-based models
used in this work might achieve better performance if trained on a larger and more
balanced dataset.

In addition, the models were trained on aggregated data from all five radios. It is
possible that patterns learned across radios may not generalize well to individual
units. With only approximately 3,600 training instances per radio, the available data
was insufficient to successfully train radio-specific models and enable a meaningful
comparison of their performance. However, given the differing characteristics of
the individual radios, there is reason to believe that radio-specific models could
potentially achieve improved performance. The baseline models calculated mean
and other statistical values per individual radio during both training and prediction;
therefore, their performance would not change in a radio-specific setup.

80

5. Discussion

In conclusion, implementing machine learning algorithms for dynamic voltage con-
trol in radios introduces both the cost and risk of underestimating voltage require-
ments. The trade-off between energy savings and the potential impact of underes-
timations must be carefully considered. Machine learning strategies were shown to
outperform simpler approaches in cases where the positive class was more prevalent.
With more data, the machine learning models might demonstrate even stronger per-
formance, as it remains unclear how well patterns generalize across radios, and the
number of radio-specific instances in the training data is relatively low.

5.2 RQ2: Classification vs. Regression
Section 4.2 presented the evaluation of all machine learning models on the test data
across three configurations: (1) classification, (2) regression optimized using the F1
score, and (3) regression optimized using MSE. Each configuration demonstrated a
trade-off between the number of underestimations and the amount of energy saved.
Although the regression models achieved higher energy savings, this came at the
cost of an increased number of underestimations. Conversely, the classification con-
figuration resulted in fewer underestimations but lower energy savings. Furthermore,
when comparing the two regression approaches, tuning models based on the F1 score
resulted in fewer underestimations than tuning on MSE, though with slightly lower
energy savings. It is important to note that the difference in energy savings between
these configurations was minor, as illustrated in Fig. 4.6. An additional advantage
of the classification approach is that it provides access to class probabilities, which
enables threshold adjustment between class 0 and class 1, as demonstrated in Sec-
tion 4.5.

An important factor contributing to the strong performance of the classification
task in minimizing underestimations was likely the use of BCEWithLogitsLoss as
internal loss function, which helped address the class imbalance in the data. A
potential direction for future research is to explore analogous techniques for the
regression tasks. Specifically, methods for minimizing underestimations or incorpo-
rating class-weighting strategies similar to those used in classification. This way,
specific penalizing could be given to models missing sudden, uncommon spikes in
the data.

Furthermore, lag values across the different task formulations were analyzed using
SHAP values to compare how models for the various tasks utilized temporal informa-
tion, as shown in Fig. 4.1. The visualization reveals distinct patterns across models.
For some models, such as the RF, the pattern is particularly clear: in the classifica-
tion setting, the model relies on shorter lags compared to the regression setting. In
general, models were shown to rarely prefer longer lag values in regression compared
to classification. The only model exhibiting this behavior is the SVC/R, where
high SHAP values are associated with longer lag values in the classification task,
while longer lags are less beneficial in the regression task optimized for MSE. For all
other models, either shorter or similar lag lengths are preferred in the classification
task compared to the regression tasks. Given that models deployed in radios must
be both energy- and memory-efficient, the classification approach may be preferred

81

5. Discussion

from an inference perspective, as it enables models with fewer parameters due to
the reduced number of input features.

Having discussed model performance and preferred lag configurations within each
setting, it is now possible to summarize the full range of characteristics for each task
formulation. An overview is provided in Table 5.1, where B denotes the benchmark
models, C the classification setup, R(F1) the regression models selected based on F1
score, and R(MSE) the regression models selected based on MSE. The table consoli-
dates the key findings of this section, emphasizing that the optimal task formulation
depends on the trade-off between energy savings and the number of underestima-
tions, and that the preference of lag differs between tasks. Among the models
evaluated, classification was the most favorable for minimizing underestimations.
Regression models tuned on MSE resulted in the highest number of underestima-
tions, while regression models selected based on the F1 score yielded slightly better
performance, although still close to the performance of the ones selected on MSE.
In contrast, when considering energy savings, the order was reversed and it was still
a small difference between the two regression cases.

When considering inference cost, the classification task demonstrated the ability to
perform well with shorter lag values, thereby requiring fewer input features and
resulting in a lower number of operations during prediction. Classification was
followed by regression selected on MSE and lastly regression selected on F1 score,
as seen in Table 4.1.

As for the benchmarking models, they had similar energy saving and underestima-
tions as the regression versions though a smaller lag as the best performing naive
benchmarks were selected and those had a lag of 1, 2, 3 and 48.

Relative Performance B C R(F1) R(MSE)
Energy Saving Favorable Intermediate Favorable Favorable
Underestimation Rate Inferior Favorable Inferior Inferior
Lag value Favorable Favorable Inferior Intermediate

Table 5.1: Comparison of model performance across different evaluation aspects.

Lastly, in the classification task the threshold for predicting class 0 or 1 can easily
be adjusted to account for the trade-off between under estimations and saved en-
ergy. Consequently, classification can be recommended for scenarios where reduced
inference cost and minimization of underestimations are prioritized. On the other
hand, if small changes in energy savings or closer alignment with the PRB-U curve
is of greater importance, the MSE-based regression approach may be preferred.

5.3 RQ3: Model Selection
This section aims to address the question of which models are most optimal for
dynamic voltage control in radios.

82

5. Discussion

5.3.1 Architectural Preferences
A key aspect of this thesis was allowing important hyperparameters to vary within
the Optuna tuning loop. One such variable that remained dynamic throughout the
tuning process was the window size. Table 4.1 presents the lag values selected for
each model by Optuna, while Fig. 4.2 displays the corresponding SHAP values of
lag in relation to model performance. Including lag as a tunable hyperparameter
enabled model-specific feature reduction, which is important in time-series forecast-
ing, as retaining only the most informative features can improve performance [80].
In addition to temporal features, some architectural choices were also included in
the hyperparameter tuning of the neural network models. For the FFNN, two such
components were whether to use residual connections and whether to apply a sig-
moid activation function in the regression setting. The box plot in Fig. 4.2 shows
that including residual connections led to slightly worse or comparable performance
across all three task formulations. However, Fig. 4.4 reveals that Optuna tended to
favor trials with residual connections in both regression settings. This suggests that
residual connections may contribute to increased stability in intermediate represen-
tations, even if they do not improve final performance.

Among the tuned FFNN models (Table 4.4), both regression models included resid-
ual connections, whereas the classifier did not. Interestingly, the deepest FFNN
model—the classifier with three layers—did not use residual connections, while the
shallower regression models, each with only one layer, did. One possible explanation
is that, in the regression case, the target values are very small, often zero or below
0.2. This may make the vanishing gradient problem more prominent than in the
classification setting, where the labels are binary and cross-entropy loss was used
with weighting for the positive class. The regression models were trained using the
MSE loss function, and the small target values can lead to very small loss values.
This is evident in Fig. 3.15, where loss values below 10−3 were reached during train-
ing on the regression task. This may explain why the regression task benefits more
from including residual connections, even though the networks are shallow. Using
an alternative loss function in the regression setting could potentially mitigate this
issue.

The results for the sigmoid activation parameter were more definitive. Fig. 4.4 shows
that performance was worse when sigmoid activation was used in both regression
settings, and Table 4.3 indicates that Optuna increasingly avoided trials with sig-
moid activation. Consistently, Table 4.4 confirms that none of the tuned regression
FFNN models included a sigmoid activation.

Dropout, as shown in Table 4.4, was included in each of the optimized FFNN mod-
els. This suggests that dropout can still provide regularization benefits even when
batch normalization is applied, which contrasts with claims in Section 2.4.5 and
the original BatchNorm paper [40], where it was suggested that batch normaliza-
tion might reduce or eliminate the need for dropout. One possible explanation is
that these techniques address different aspects of the training process: batch nor-
malization stabilizes the distribution of activations and allows for higher learning
rates, while dropout reduces co-adaptation among neurons by forcing the network

83

5. Discussion

to learn redundant representations, as discussed in Section 2.4.5. In combination,
they may offer complementary regularization effects, particularly in the context of
the structured time-series data used in this thesis.

However, it is also possible that the inclusion of dropout does not significantly impact
performance. To verify this, a similar analysis should be conducted for dropout, as
was performed for the residual connections and sigmoid activation parameters.

These results suggest that the FFNN model used for regression should not employ a
sigmoid activation for this task. The impact of including residual connections is less
conclusive, although they were included for both regression tasks. Further analysis
is needed to better understand why Optuna favored trials with residual connections
in the regression settings. One hypothesis proposed in this thesis is that this may be
related to the low target values. Dropout was included for all settings, suggesting
that it might provide additional regularization effects despite the presence of batch
normalization after each layer in the FFNN architecture.

Some hyperparameters for the HybridLSTM were presented in Section 4.1.2. Fig. 4.1
showed the effect of lag on performance for all models. For the HybridLSTM, it
seems lag values up to a certain limit, around 40 for the classification and F1 score
based regression task, and around 20 for the MSE based regression task, improves
the model performance. Longer lag values, however, seem to worsen the performance.
This suggests that even though the HybridLSTM inherently can account for time
aspect in its input data, the performance can be further improved by providing
additional temporal information in the input features, to a certain point.

The dropout values for the optimal HybridLSTM model configurations, presented in
Table 4.5, exhibit varying preferences across task formulations. For the regression
tasks, dropout appears to be beneficial-it is included in both the F1-optimized and
MSE-optimized models. Notably, the F1-based model adopts the maximum permit-
ted value of 0.5, while the MSE-based model uses a more moderate value of 0.1. In
contrast, dropout is excluded entirely from the optimal configuration for the classi-
fication task. These results suggest that the effectiveness and optimal magnitude of
dropout could be task-dependent. Stronger regularization may be advantageous in
regression scenarios, particularly when addressing class imbalance, whereas in clas-
sification, it may not contribute meaningfully or could even be detrimental. This
pattern differs somewhat from the results observed for the FFNN models, where
dropout was included across all configurations. One possible explanation is that the
different model architectures have different regularization requirements or sensitivi-
ties. Nevertheless, due to the conflicting patterns observed, a more comprehensive
analysis of dropout values across all trials would be necessary to draw firmer con-
clusions about its overall impact.

In summary, the number of temporal features along with several architectural com-
ponents were evaluated for their impact on performance. For the FFNN model, the
inclusion of residual connections was favored by the hyperparameter tuner in the
regression settings; however, the resulting performance over the tuning trials was
slightly worse or comparable to models without residual connections. The use of a
sigmoid activation function in the regression setting was consistently detrimental, de-

84

5. Discussion

spite its theoretical ability to constrain outputs within an acceptable range. Dropout
was included across all optimized FFNN configurations, suggesting that it provided
additional regularization benefits even in the presence of batch normalization.

For the HybridLSTM, incorporating explicit time features (through lag selection)
proved beneficial, even though the model is inherently designed to capture temporal
dependencies. The use of dropout showed more task-dependent behavior: it was
included in the optimized regression models, but not in the classification model,
indicating that its effectiveness may vary with model architecture and task formula-
tion.

5.3.2 Model Performance
As for evaluation, the relatively small differences in energy savings become evident
when comparing the top and bottom performers in the full evaluation, presented in
Table 4.7. The KNR and TFT models, when selected based on MSE, achieved the
highest energy savings at 12.82%, closely followed by the RF model, also selected on
MSE, with 12.81%. The lowest energy savings were recorded by the TFT classifier,
which achieved 11.78%. This results in a total range of only 1.03 percentage points
between the best and worst models, corresponding to a difference of approximately
8% relative to the top-performing model.

Despite being the lowest performer in terms of energy savings, the TFT classifier
achieved the best performance in minimizing underestimations. This clearly illus-
trates the trade-off between energy savings and prediction accuracy during high-load
periods. The range of underestimations shown in Table 4.7 spans from 31 to 68, rep-
resenting more than a 100% increase from the best to the worst performer in this
metric. A key question that emerges is: What constitutes an acceptable balance
between potential performance loss due to underestimations and the marginal gain
of saving an additional percentage point of energy?

As for CNN it did not outperform LSTM on the test data, contrasting to performance
noted by other studies [81]. Neither did the TFT even though it should be an
improved variant of the LSTM. Since deep models usually outperform more shallow
ones with more data, it is possible that the results would be different if the models
had been trained on more data.

Prior research has demonstrated that tree-based models can outperform deep learn-
ing approaches in certain structured data tasks [54]. In the context of this thesis, as
shown in Table 4.8, the RF model outperformed the other models in terms of MSE
and MAE in the version optimized for MSE. The version optimized for F1 score
also performed strongly, ranking second, despite competing against models selected
using an MSE objective.

However, with respect to the two key metrics of this thesis-energy savings and num-
ber underestimations-the RF classifier exhibited more underestimations than most
of the neural network models. Only the HybridLSTM produced a higher number
of underestimations than the RF classifier in the classification setting. In the F1-
optimized regression setting, however, the RF outperformed both the HybridCNN

85

5. Discussion

and the FFNN in terms of energy savings. Fig. 5.1 highlights the RF model’s com-
parative performance.

Figure 5.1: RF remained competitive in the overall evaluation.

In conclusion, selecting an optimal model for implementing dynamic voltage control
in radios depends on the trade-off between maximizing energy savings and minimiz-
ing underestimations of voltage needs. Achieving higher energy savings comes at
the cost of missing spikes in power demand. Further research is needed to better
understand the negative effects of underestimations relative to energy savings and
how these factors should be weighted against each other.

Two models with particularly favorable characteristics are the RF and FFNN clas-
sifiers. Both achieve energy savings of approximately 12.4%, while producing fewer
underestimations compared to the majority of the evaluated models. In addition,
selecting these classifiers allows for flexible adaptation of the decision threshold, as
demonstrated in Section 4.5. Between the two, the FFNN offers an advantage in
terms of producing fewer underestimations, while the RF is preferable in terms of
lower model complexity.

5.3.3 Performance on Synthetic Data
The original data used for training and prediction in this thesis is heavily weighted
toward the negative class, as previously discussed in Section 3.3.1. This reflects the
fact that most utilization levels are low, meaning the radios typically operate below
their capacity. An important question is how well the same models would perform
under more extreme, high-utilization conditions. This question was addressed in
Section 4.4 of the results. Since higher utilization data presents different potentials
for energy savings and underestimations, the following discussion always considers
performance as a percentage of the maximum achievable in each scenario.

86

5. Discussion

Fig. 5.2 illustrates the performance of each model on the two datasets, expressed as
a percentage of the optimal performance for both metrics. RF performs similarly in
both contexts, though with a noticeable performance decrease in underestimations
on the synthetic data. The XGB model shows good performance in reducing un-
derestimations under the test condition but performs inefficiently in the synthetic
high-utilization scenario. SVC’s performance in underestimations also drops notice-
ably in the synthetic data.

On the other hand, KNC performs better on the synthetic data, maintaining energy
savings close to the optimum while reducing underestimations. The FFNN reduces
underestimations in the synthetic scenario, though with a slight drop in energy
savings. The HybridLSTM also improves its underestimation performance under
these conditions, as does the TFT. The HybridCNN maintains stable performance
across both cases.

Figure 5.2: Performance difference between test set and the synthetic data set.

Another observation is that the benchmarking models became more competitive on
the synthetic dataset. As shown in Table 4.15, the naive_mean_1 model had 261
underestimations and achieved a 10.1% energy savingcomparable to the FFNN with
250 underestimations and 9.9% savings, and the TFT with 241 underestimations
and 8.88% savings. This increased competitiveness of the baseline models reinforces
the earlier argument that the optimal solution may vary across radios or scenarios,
and that even simple models can perform well in certain settings.

Concluding, both the RF and FFNN previously identified as top performers demon-
strated relatively stable performance on the synthetic data. However, the RF showed
a slight decline in underestimation accuracy, while the FFNN experienced a slight
drop in energy savings.

5.4 RQ4: Explainability
An investigation of the top-performing models was conducted to better understand
how they interpret the input features. Section 4.6 presented feature importances

87

5. Discussion

with respect to predicting the higher voltage level, i.e., the positive class. Fig. 4.10
displayed the SHAP values for the RF classifier, while Fig. 4.11 presented those for
the FFNN.

The SHAP analysis provides insight into how the two models make their predic-
tions by identifying which input features contribute most strongly to the predicted
outcomes. Across both models, PRB-U at the current timestep (t–0) emerged as
the most influential feature. In both cases, this feature consistently exhibited high
SHAP values: low PRB-U values reduced the predicted probability of class 1, while
high values increased it. This finding aligns with domain expectations, as PRB-U
in the next step is the target variable.

However, this feature is significantly more dominant in the FFNN than in the RF
model. This suggests that PRB-U at t–0 has a disproportionately large influence on
the FFNNs predictions, whereas the RF model distributes importance more evenly
across multiple features. As a result, the FFNN may be more sensitive to outliers
or noise in the PRB-U feature, since it relies heavily on this input. In contrast, the
RF model may exhibit greater robustness, as it draws on a broader set of features.

The pattern remained consistent when inspecting individual predictions. In the
selected examples, the FFNN assigned a higher probability than the RF model
when correctly classifying the true positive instance, but it also assigned a higher
probability to the true negative instance being classified as positive. Conversely,
for false negative and false positive cases, the RF model was less confident in its
incorrect predictions compared to the FFNN, suggesting potentially more cautious
decision-making.

Moreover, some features exhibited the opposite SHAP value trend compared to PRB-
U at t–0. For example, high values of mean power consumption at t–3 and PRB-U
at t–1 were associated with negative SHAP contributions in the FFNN model, as
shown in Fig. 4.11. Similar patterns were also observed in the RF model. This
contrast suggests that both models may be capturing temporal dynamics, where
high values in earlier timesteps indicate a reduction or reversal in the likelihood of
the positive class.

In summary, the SHAP analysis provided insights into how the top-performing mod-
els utilize input features to make predictions. Both the RF and FFNN models relied
heavily on PRB-U at the current timestep, which aligns with domain expectations.
However, the FFNN exhibited a stronger dependence on this feature, potentially
making it more sensitive to variations in PRB-U. In contrast, the RF model dis-
tributed importance more evenly, which may contribute to greater robustness. Ad-
ditionally, both models appeared to capture temporal patterns, with certain earlier
features contributing negatively to the likelihood of a positive classification. These
findings illustrate that while both models are effective, their predictive strategies dif-
fer in ways that may have practical implications for model selection and deployment
in dynamic voltage control scenarios.

88

5. Discussion

5.5 Reliability of Results
An important limitation of this thesis is the selection of radios. The research was
conducted on a single radio type, and it is therefore unclear whether the results are
applicable to other radio types or to radios with more than one cell. Furthermore,
this study examined only five randomly selected radios; an examination of the full
population could yield different results.

Another important consideration is that all of the studied radios had sleep mode
activated. A hypothesis emerging from this thesis is that radios without sleep mode
could benefit even more from a dynamic voltage setting, as they are likely to expe-
rience low utilization during nighttime hours when voltage could be reduced.

The extent of the available data also presents a limitation. The dataset was drawn
from the same year and covered only a limited number of months. As a result,
potential monthly patterns and seasonal effects may not have been captured. In
addition, the data was limited in terms of the number of instances in the positive
class, reducing the reliability of certain results. This issue was partially addressed
through the creation of synthetic data, as described in Section 4.4.

Finally, as noted in the delimitation of this thesis, only eight machine learning
algorithms were examined. While these were considered the most relevant given the
current state of the field, other algorithms could potentially yield favorable results
as well.

89

5. Discussion

90

6
Conclusion

This thesis implemented and compared three machine learning approaches for dy-
namically adapting voltage levels in radios, aiming to improve energy efficiency and
thereby optimize for sustainability.

The results indicate that machine learning is a valuable approach for voltage control
over time (RQ1). However, introducing a dynamic voltage creates a trade-off: while
substantial energy can be saved, potential underestimations can lead to connectiv-
ity disturbances. The study also highlights radio variability, some radios benefit
less from ML-based approaches and may perform as good or better with simple
benchmark models or a static voltage reduction.

Among the implemented approaches, the classification formulation outperformed
the regression setups in terms of reducing underestimations (RQ2). When using
regression, tuning based on the F1 score rather than MSE is recommended, as it
lowers the number of restarts while preserving energy savings (RQ2.1). Each setup
showed different preferences regarding length of the lag parameter from the Optuna
trials (RQ2.2). Classification models tended to rely less on long temporal histories
(mean preferred lag: 37.6), while regression models selected using F1 and MSE
preferred longer lags (mean preferred lags: 63.1 and 43.8, respectively).

The thesis proposes a Random Forest (RF) classifier and a customized Feedforward
Neural Network (FFNN) classifier as promising candidates (RQ3). Both achieved
substantial energy savings and relatively few underestimations: the RF had 42 under-
estimations with a 12.43% energy saving, while the FFNN had 34 underestimations
with a 12.41% saving. The robustness of the models was validated using a synthetic
test set where PRB utilization (PRB-U) was doubled. Both models maintained rel-
atively stable performance. The FFNN showed reduced energy savings but fewer
underestimations, while the RF experienced increased energy efficiency and a slight
drop in underestimations

Furthermore, a specified advantage of classification is the availability of prediction
probabilities, which enables easy control over the trade-off between energy savings
and underestimations. As shown in this thesis, the FFNN classifier could be tuned to
achieve only 5 underestimations while saving 10% energy, by adjusting the decision
threshold.

Explainability analysis of the RF and FFNN classifier confirmed that the PRB-U in
the current timestep is the most important feature for both models (RQ4), which

91

6. Conclusion

aligns with domain knowledge. Notably, the RF model distributed importance more
evenly across features, suggesting higher robustness, while the FFNN showed a
heavier reliance on one dominant feature.

In summary, this work contributes to the area of building energy-aware radios and
emphasizes the importance of balancing energy efficiency and underestimations in
deployment. Future work should investigate the impact of voltage underestimations
to better inform model selection, objective function design, and deployment strate-
gies.

92

Bibliography

[1] U. N. F. C. on Climate Change (UNFCCC), The paris agreement, Available
at, 2015. [Online]. Available: https://unfccc.int/process-and-meetings/
the-paris-agreement/the-paris-agreement.

[2] C. C. C. Service, Copernicus: January 2025 was the warmest on record glob-
ally, despite an emerging la niña, Accessed: 2025-03-18, Feb. 2025. [Online].
Available: https://climate.copernicus.eu/press-release/copernicus-
january-2025-was-warmest-record-globally-despite-emerging-la-
ni%C3%B1a.

[3] J. Malmodin, N. Lövehagen, P. Bergmark, and D. Lundén, Ict sector electricity
consumption and greenhouse gas emissions 2020 outcome, Available at SSRN:
https://ssrn.com/abstract=4424264 or http://dx.doi.org/10.2139/
ssrn.4424264, Apr. 2023.

[4] Ember and E. Institute, Carbon intensity of electricity generation ember and
energy institute, Dataset, Major processing by Our World in Data. Original
data from Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Re-
view of World Energy". Retrieved March 21, 2025., 2024. [Online]. Available:
https://ourworldindata.org/grapher/carbon-intensity-electricity.

[5] J. G. Gómez, A. Matlok, T. Silveira, and L. Verboven, “The growing impera-
tive of energy optimization for telco networks,” Feb. 2024, Accessed: 2025-04-
02. [Online]. Available: https://www.mckinsey.com/industries/technology-
media-and-telecommunications/our-insights/the-growing-imperative-
of-energy-optimization-for-telco-networks.

[6] T. M. Alabi, E. I. Aghimien, F. D. Agbajor, et al., “A review on the inte-
grated optimization techniques and machine learning approaches for model-
ing, prediction, and decision making on integrated energy systems,” Renew-
able Energy, vol. 194, pp. 822–849, 2022, issn: 0960-1481. doi: https : / /
doi.org/10.1016/j.renene.2022.05.123. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0960148122007741.

[7] D. Koolen, N. Sadat-Razavi, and W. Ketter, “Machine learning for identify-
ing demand patterns of home energy management systems with dynamic elec-
tricity pricing,” Applied Sciences, vol. 7, no. 11, 2017, issn: 2076-3417. doi:
10.3390/app7111160. [Online]. Available: https://www.mdpi.com/2076-
3417/7/11/1160.

[8] G. Dhiman and T. S. Rosing, “Dynamic power management using machine
learning,” in Proceedings of the 2006 IEEE/ACM International Conference on
Computer-Aided Design, ser. ICCAD ’06, San Jose, California: Association for

93

https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
https://climate.copernicus.eu/press-release/copernicus-january-2025-was-warmest-record-globally-despite-emerging-la-ni%C3%B1a
https://climate.copernicus.eu/press-release/copernicus-january-2025-was-warmest-record-globally-despite-emerging-la-ni%C3%B1a
https://climate.copernicus.eu/press-release/copernicus-january-2025-was-warmest-record-globally-despite-emerging-la-ni%C3%B1a
https://ssrn.com/abstract=4424264
http://dx.doi.org/10.2139/ssrn.4424264
http://dx.doi.org/10.2139/ssrn.4424264
https://ourworldindata.org/grapher/carbon-intensity-electricity
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/the-growing-imperative-of-energy-optimization-for-telco-networks
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/the-growing-imperative-of-energy-optimization-for-telco-networks
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/the-growing-imperative-of-energy-optimization-for-telco-networks
https://doi.org/https://doi.org/10.1016/j.renene.2022.05.123
https://doi.org/https://doi.org/10.1016/j.renene.2022.05.123
https://www.sciencedirect.com/science/article/pii/S0960148122007741
https://www.sciencedirect.com/science/article/pii/S0960148122007741
https://doi.org/10.3390/app7111160
https://www.mdpi.com/2076-3417/7/11/1160
https://www.mdpi.com/2076-3417/7/11/1160

Bibliography

Computing Machinery, 2006, pp. 747–754, isbn: 1595933891. doi: 10.1145/
1233501.1233656. [Online]. Available: https://doi.org/10.1145/1233501.
1233656.

[9] C. Zhang, L. Zhao, Z. Yin, and Z. Zhang, “Causalformer: Causal discovery-
based transformer for multivariate time series forecasting,” in 2023 16th In-
ternational Congress on Image and Signal Processing, BioMedical Engineering
and Informatics (CISP-BMEI), IEEE, 2023, pp. 1–10. doi: 10.1109/CISP-
BMEI60920.2023.10373365. [Online]. Available: https://doi.org/10.1109/
CISP-BMEI60920.2023.10373365.

[10] M. Tzelepi, C. Symeonidis, P. Nousi, et al., Deep learning for energy time-
series analysis and forecasting, 2023. arXiv: 2306.09129 [cs.LG]. [Online].
Available: https://arxiv.org/abs/2306.09129.

[11] B. Yildirim and M. Taskiran, “Optuna based optimized transformer model ap-
proach in bitcoin time series analysis,” in 2024 26th International Conference
on Digital Signal Processing and its Applications (DSPA), 2024, pp. 1–6. doi:
10.1109/DSPA60853.2024.10510091.

[12] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-
generation hyperparameter optimization framework,” in Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, ser. KDD ’19, Anchorage, AK, USA: Association for Computing Ma-
chinery, 2019, pp. 2623–2631, isbn: 9781450362016. doi: 10.1145/3292500.
3330701. [Online]. Available: https://doi.org/10.1145/3292500.3330701.

[13] S. Lundberg and S.-I. Lee, A unified approach to interpreting model predictions,
2017. arXiv: 1705.07874 [cs.AI]. [Online]. Available: https://arxiv.org/
abs/1705.07874.

[14] O. Liberg, M. Sundberg, Y.-P. E. Wang, J. Bergman, and J. Sachs, “Chapter
5 - lte-m,” in Cellular Internet of Things, O. Liberg, M. Sundberg, Y.-P. E.
Wang, J. Bergman, and J. Sachs, Eds., Academic Press, 2018, pp. 135–197,
isbn: 978-0-12-812458-1. doi: https://doi.org/10.1016/B978- 0- 12-
812458-1.00005-8. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/B9780128124581000058.

[15] A. Ghosh, J. Zhang, J. G. Andrews, and R. Muhamed, Fundamentals of LTE.
Pearson Education, 2010.

[16] Z.-H. Zhou, Machine Learning. Springer Nature, 2021.
[17] B. Krawczyk, “Learning from imbalanced data: Open challenges and future

directions,” Progress in artificial intelligence, vol. 5, no. 4, pp. 221–232, 2016.
[18] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,

pp. 436–444, 2015.
[19] Z. S. Kadhim, H. S. Abdullah, and K. I. Ghathwan, “Artificial neural network

hyperparameters optimization: A survey,” Int. J. Online Biomed. Eng., vol. 18,
pp. 59–87, 2022. [Online]. Available: https://api.semanticscholar.org/
CorpusID:254391194.

[20] J. Kim, H. Kim, H. Kim, et al., “A comprehensive survey of time series fore-
casting: Architectural diversity and open challenges,” 2024. [Online]. Available:
https://api.semanticscholar.org/CorpusID:273963385.

94

https://doi.org/10.1145/1233501.1233656
https://doi.org/10.1145/1233501.1233656
https://doi.org/10.1145/1233501.1233656
https://doi.org/10.1145/1233501.1233656
https://doi.org/10.1109/CISP-BMEI60920.2023.10373365
https://doi.org/10.1109/CISP-BMEI60920.2023.10373365
https://doi.org/10.1109/CISP-BMEI60920.2023.10373365
https://doi.org/10.1109/CISP-BMEI60920.2023.10373365
https://arxiv.org/abs/2306.09129
https://arxiv.org/abs/2306.09129
https://doi.org/10.1109/DSPA60853.2024.10510091
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701
https://arxiv.org/abs/1705.07874
https://arxiv.org/abs/1705.07874
https://arxiv.org/abs/1705.07874
https://doi.org/https://doi.org/10.1016/B978-0-12-812458-1.00005-8
https://doi.org/https://doi.org/10.1016/B978-0-12-812458-1.00005-8
https://www.sciencedirect.com/science/article/pii/B9780128124581000058
https://www.sciencedirect.com/science/article/pii/B9780128124581000058
https://api.semanticscholar.org/CorpusID:254391194
https://api.semanticscholar.org/CorpusID:254391194
https://api.semanticscholar.org/CorpusID:273963385

Bibliography

[21] Y. Feng, Y. Zhang, and Y. Wang, “Out-of-sample volatility prediction: Rolling
window, expanding window, or both?” Journal of Forecasting, vol. 43, no. 3,
pp. 567–582, 2024.

[22] J. D. Freitas, C. Ponte, R. Bomfim, and C. Caminha, “The impact of window
size on univariate time series forecasting using machine learning,” Anais do XI
Symposium on Knowledge Discovery, Mining and Learning (KDMiLe 2023),
2023. [Online]. Available: https://api.semanticscholar.org/CorpusID:
263723373.

[23] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, Oct.
2001, issn: 1573-0565. doi: 10.1023/A:1010933404324. [Online]. Available:
https://doi.org/10.1023/A:1010933404324.

[24] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1, pp. 81–
106, 1986.

[25] Scikit-learn developers. “Decision trees.” Accessed: 2025-05-15. (2025), [On-
line]. Available: https://scikit-learn.org/stable/modules/tree.html#
tree-mathematical-formulation.

[26] M. R. Segal, “Machine learning benchmarks and random forest regression,”
2004.

[27] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in
Proceedings of the 22nd acm sigkdd international conference on knowledge dis-
covery and data mining, 2016, pp. 785–794.

[28] J. H. Friedman, “Greedy function approximation: A gradient boosting ma-
chine,” Annals of statistics, pp. 1189–1232, 2001.

[29] Scikit-learn developers. “Gradientboostingregressor.” Accessed: 2025-05-13. (2025),
[Online]. Available: https://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.GradientBoostingRegressor.html.

[30] P. Cunningham and S. Delany, “K-nearest neighbour classifiers,” Mult Classif
Syst, vol. 54, Apr. 2007. doi: 10.1145/3459665.

[31] O. Kramer and O. Kramer, “K-nearest neighbors,” Dimensionality reduction
with unsupervised nearest neighbors, pp. 13–23, 2013.

[32] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20,
pp. 273–297, 1995.

[33] H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V. Vapnik, “Sup-
port vector regression machines,” in Advances in Neural Information Process-
ing Systems, M. Mozer, M. Jordan, and T. Petsche, Eds., vol. 9, MIT Press,
1996. [Online]. Available: https://proceedings.neurips.cc/paper_files/
paper/1996/file/d38901788c533e8286cb6400b40b386d-Paper.pdf.

[34] D. Basak, S. Pal, D. C. Patranabis, et al., “Support vector regression,” Neural
Information Processing-Letters and Reviews, vol. 11, no. 10, pp. 203–224, 2007.

[35] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[36] E. Alpaydin, Introduction to machine learning. MIT press, 2020.
[37] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation func-

tions: Comparison of trends in practice and research for deep learning,” arXiv
preprint arXiv:1811.03378, 2018.

95

https://api.semanticscholar.org/CorpusID:263723373
https://api.semanticscholar.org/CorpusID:263723373
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://scikit-learn.org/stable/modules/tree.html#tree-mathematical-formulation
https://scikit-learn.org/stable/modules/tree.html#tree-mathematical-formulation
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
https://doi.org/10.1145/3459665
https://proceedings.neurips.cc/paper_files/paper/1996/file/d38901788c533e8286cb6400b40b386d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1996/file/d38901788c533e8286cb6400b40b386d-Paper.pdf
http://www.deeplearningbook.org

Bibliography

[38] P. Contributors, Gelu, Accessed: 2025-05-15, 2025. [Online]. Available: https:
//docs.pytorch.org/docs/stable/generated/torch.nn.GELU.html.

[39] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” J. Mach.
Learn. Res., vol. 15, pp. 1929–1958, 2014. [Online]. Available: https://api.
semanticscholar.org/CorpusID:6844431.

[40] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” ArXiv, vol. abs/1502.03167,
2015. [Online]. Available: https://api.semanticscholar.org/CorpusID:
5808102.

[41] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, 2015. [Online]. Available: https://api.semanticscholar.
org/CorpusID:206594692.

[42] Z. C. Lipton, J. Berkowitz, and C. Elkan, A critical review of recurrent neural
networks for sequence learning, 2015. arXiv: 1506.00019 [cs.LG]. [Online].
Available: https://arxiv.org/abs/1506.00019.

[43] A. Sherstinsky, “Fundamentals of recurrent neural network (rnn) and long
short-term memory (lstm) network,” Physica D: Nonlinear Phenomena, vol. 404,
p. 132 306, 2020.

[44] G. Van Houdt, C. Mosquera, and G. Nápoles, “A review on the long short-
term memory model,” Artificial Intelligence Review, vol. 53, Dec. 2020. doi:
10.1007/s10462-020-09838-1.

[45] B. Xu, “Multi-channel convolutional neural network with long short-term
memory for power grid safety monitoring,” 2024 Second International Confer-
ence on Data Science and Information System (ICDSIS), pp. 1–4, 2024. [On-
line]. Available: https://api.semanticscholar.org/CorpusID:271295895.

[46] Y. Lecun and Y. Bengio, “Convolutional networks for images, speech, and
time-series,” Jan. 1995.

[47] S. Indolia, A. K. Goswami, S. Mishra, and P. Asopa, “Conceptual under-
standing of convolutional neural network- a deep learning approach,” Procedia
Computer Science, vol. 132, pp. 679–688, 2018, International Conference on
Computational Intelligence and Data Science, issn: 1877-0509. doi: https:
//doi.org/10.1016/j.procs.2018.05.069. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1877050918308019.

[48] K. O’shea and R. Nash, “An introduction to convolutional neural networks,”
arXiv preprint arXiv:1511.08458, 2015.

[49] B. Lim, S. O. Arik, N. Loeff, and T. Pfister, Temporal fusion transformers for
interpretable multi-horizon time series forecasting, 2020. arXiv: 1912.09363
[stat.ML]. [Online]. Available: https://arxiv.org/abs/1912.09363.

[50] J. L. Joy and M. P. Selvan, “A comprehensive study on the performance of
different multi-class classification algorithms and hyperparameter tuning tech-
niques using optuna,” 2022 International Conference on Computing, Commu-
nication, Security and Intelligent Systems (IC3SIS), pp. 1–5, 2022. [Online].
Available: https://api.semanticscholar.org/CorpusID:252312119.

96

https://docs.pytorch.org/docs/stable/generated/torch.nn.GELU.html
https://docs.pytorch.org/docs/stable/generated/torch.nn.GELU.html
https://api.semanticscholar.org/CorpusID:6844431
https://api.semanticscholar.org/CorpusID:6844431
https://api.semanticscholar.org/CorpusID:5808102
https://api.semanticscholar.org/CorpusID:5808102
https://api.semanticscholar.org/CorpusID:206594692
https://api.semanticscholar.org/CorpusID:206594692
https://arxiv.org/abs/1506.00019
https://arxiv.org/abs/1506.00019
https://doi.org/10.1007/s10462-020-09838-1
https://api.semanticscholar.org/CorpusID:271295895
https://doi.org/https://doi.org/10.1016/j.procs.2018.05.069
https://doi.org/https://doi.org/10.1016/j.procs.2018.05.069
https://www.sciencedirect.com/science/article/pii/S1877050918308019
https://www.sciencedirect.com/science/article/pii/S1877050918308019
https://arxiv.org/abs/1912.09363
https://arxiv.org/abs/1912.09363
https://arxiv.org/abs/1912.09363
https://api.semanticscholar.org/CorpusID:252312119

Bibliography

[51] O. Contributors, Efficient optimization algorithms, Accessed: 2025-04-07, Op-
tuna Documentation, 2018. [Online]. Available: https://optuna.readthedocs.
io/en/stable/tutorial/10_key_features/003_efficient_optimization_
algorithms.html#pruning.

[52] V. Vimbi, N. Shaffi, and M. Mahmud, “Interpreting artificial intelligence mod-
els: A systematic review on the application of lime and shap in alzheimers
disease detection,” Brain Informatics, vol. 11, no. 1, p. 10, 2024. doi: 10.
1186/s40708- 024- 00222- 1. [Online]. Available: https://doi.org/10.
1186/s40708-024-00222-1.

[53] H. Akoglu, “User’s guide to correlation coefficients,” Turkish journal of emer-
gency medicine, vol. 18, no. 3, pp. 91–93, 2018.

[54] L. Grinsztajn, E. Oyallon, and G. Varoquaux, Why do tree-based models still
outperform deep learning on tabular data? 2022. arXiv: 2207.08815 [cs.LG].
[Online]. Available: https://arxiv.org/abs/2207.08815.

[55] O. Contributors, Optuna.samplers, Accessed: 2025-04-07, Optuna, 2018. [On-
line]. Available: https://optuna.readthedocs.io/en/stable/reference/
samplers/index.html#optuna-samplers.

[56] S. learn developers, F1_score, https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.f1_score.html, Accessed: 2025-05-13, 2025.

[57] B. Courty, V. Schmidt, S. Luccioni, et al., Mlco2/codecarbon: V2.4.1, ver-
sion v2.4.1, May 2024. doi: 10.5281/zenodo.11171501. [Online]. Available:
https://doi.org/10.5281/zenodo.11171501.

[58] R. Wan, S. Mei, J. Wang, M. Liu, and F. Yang, “Multivariate temporal convo-
lutional network: A deep neural networks approach for multivariate time series
forecasting,” Electronics, vol. 8, no. 8, 2019, issn: 2079-9292. doi: 10.3390/
electronics8080876. [Online]. Available: https://www.mdpi.com/2079-
9292/8/8/876.

[59] Matplotlib Development Team, Matplotlib.pyplot, Accessed: 2025-05-13, Mat-
plotlib, 2022. [Online]. Available: https://matplotlib.org/3.5.3/api/
_as_gen/matplotlib.pyplot.html#module-matplotlib.pyplot.

[60] T. N. D. Team, Numpy: Fundamental package for scientific computing with
python, https://numpy.org/, Version 1.26.x, 2024.

[61] Optuna Contributors, Optuna: A Hyperparameter Optimization Framework,
https://optuna.org/, Accessed: 2025-05-28, 2024.

[62] Optuna Contributors, TPESampler Optuna Documentation, https://optuna.
readthedocs.io/en/stable/reference/samplers/generated/optuna.
samplers.TPESampler.html, Accessed: 2025-05-28, 2024.

[63] Optuna Contributors, MedianPruner Optuna Documentation, https://optuna.
readthedocs . io / en / stable / reference / generated / optuna . pruners .
MedianPruner.html, Accessed: 2025-05-28, 2024.

[64] T. pandas development team, Pandas: Powerful python data analysis toolkit,
https://pandas.pydata.org/, Version 2.x, 2024.

[65] PyTorch Contributors, torch.nn.Linear PyTorch Documentation, https://
pytorch.org/docs/stable/generated/torch.nn.Linear.html, Accessed:
2025-05-28, 2024.

97

https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/003_efficient_optimization_algorithms.html#pruning
https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/003_efficient_optimization_algorithms.html#pruning
https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/003_efficient_optimization_algorithms.html#pruning
https://doi.org/10.1186/s40708-024-00222-1
https://doi.org/10.1186/s40708-024-00222-1
https://doi.org/10.1186/s40708-024-00222-1
https://doi.org/10.1186/s40708-024-00222-1
https://arxiv.org/abs/2207.08815
https://arxiv.org/abs/2207.08815
https://optuna.readthedocs.io/en/stable/reference/samplers/index.html#optuna-samplers
https://optuna.readthedocs.io/en/stable/reference/samplers/index.html#optuna-samplers
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://doi.org/10.5281/zenodo.11171501
https://doi.org/10.5281/zenodo.11171501
https://doi.org/10.3390/electronics8080876
https://doi.org/10.3390/electronics8080876
https://www.mdpi.com/2079-9292/8/8/876
https://www.mdpi.com/2079-9292/8/8/876
https://matplotlib.org/3.5.3/api/_as_gen/matplotlib.pyplot.html#module-matplotlib.pyplot
https://matplotlib.org/3.5.3/api/_as_gen/matplotlib.pyplot.html#module-matplotlib.pyplot
https://numpy.org/
https://optuna.org/
https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.samplers.TPESampler.html
https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.samplers.TPESampler.html
https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.samplers.TPESampler.html
https://optuna.readthedocs.io/en/stable/reference/generated/optuna.pruners.MedianPruner.html
https://optuna.readthedocs.io/en/stable/reference/generated/optuna.pruners.MedianPruner.html
https://optuna.readthedocs.io/en/stable/reference/generated/optuna.pruners.MedianPruner.html
https://pandas.pydata.org/
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html

Bibliography

[66] PyTorch Contributors, torch.nn.Dropout PyTorch Documentation, https://
pytorch.org/docs/stable/generated/torch.nn.Dropout.html, Accessed:
2025-05-28, 2024.

[67] PyTorch Contributors, torch.nn.BatchNorm1d PyTorch Documentation, https:
//pytorch.org/docs/stable/generated/torch.nn.BatchNorm1d.html,
Accessed: 2025-05-28, 2024.

[68] PyTorch Contributors, torch.nn.LSTM PyTorch Documentation, https://
pytorch.org/docs/stable/generated/torch.nn.LSTM.html, Accessed:
2025-05-28, 2024.

[69] PyTorch Contributors, torch.nn.Conv1d PyTorch Documentation, https://
pytorch.org/docs/stable/generated/torch.nn.Conv1d.html, Accessed:
2025-05-28, 2024.

[70] P. Contributors, Maxpool1d, Accessed: 2025-05-13, 2025. [Online]. Available:
https://docs.pytorch.org/docs/stable/generated/torch.nn.MaxPool1d.
html#torch.nn.MaxPool1d.

[71] P. Contributors, Adaptiveavgpool1d, Accessed: 2025-05-13, 2025. [Online]. Avail-
able: https://docs.pytorch.org/docs/stable/generated/torch.nn.
AdaptiveAvgPool1d.html.

[72] PyTorch Forecasting Contributors, TemporalFusionTransformer PyTorch Fore-
casting Documentation, https://pytorch-forecasting.readthedocs.io/
en / v1 . 0 . 0 / api / pytorch _ forecasting . models . temporal _ fusion _
transformer.TemporalFusionTransformer.html, Accessed: 2025-05-28, 2024.

[73] PyTorch Forecasting Contributors, TimeSeriesDataSet PyTorch Forecasting
Documentation, https://pytorch-forecasting.readthedocs.io/en/v1.
0.0/api/pytorch_forecasting.data.timeseries.TimeSeriesDataSet.
html, Accessed: 2025-05-28, 2024.

[74] PyTorch Lightning Contributors, PyTorch Lightning Documentation, https:
//lightning.ai/docs/pytorch/stable/, Accessed: 2025-05-28, 2024.

[75] S. learn developers, Randomforestregressor, https://scikit- learn.org/
stable/modules/generated/sklearn.ensemble.RandomForestRegressor.
html, Accessed: 2025-05-13, 2025.

[76] S. learn developers, Svr, https://scikit- learn.org/stable/modules/
generated/sklearn.svm.SVR.html, Accessed: 2025-05-13, 2025.

[77] S. learn developers, Kneighborsregressor, https : / / scikit - learn . org /
stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.
html, Accessed: 2025-05-13, 2025.

[78] M. Waskom, Seaborn.heatmap, Accessed: 2025-05-13, 2024. [Online]. Available:
https : / / seaborn . pydata . org / generated / seaborn . heatmap . html #
seaborn.heatmap.

[79] SHAP Contributors, SHAP Documentation, https://shap.readthedocs.
io/en/latest/, Accessed: 2025-05-28, 2024.

[80] M. Ashraf, F. Anowar, J. H. Setu, et al., “A survey on dimensionality reduction
techniques for time-series data,” IEEE Access, vol. 11, pp. 42 909–42 923, 2023.
doi: 10.1109/ACCESS.2023.3269693.

[81] M. Kirisci and O. Cagcag Yolcu, “A new cnn-based model for financial time
series: Taiex and ftse stocks forecasting,” Neural Processing Letters, vol. 54,

98

https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html
https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html
https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm1d.html
https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm1d.html
https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html
https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html
https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
https://docs.pytorch.org/docs/stable/generated/torch.nn.MaxPool1d.html#torch.nn.MaxPool1d
https://docs.pytorch.org/docs/stable/generated/torch.nn.MaxPool1d.html#torch.nn.MaxPool1d
https://docs.pytorch.org/docs/stable/generated/torch.nn.AdaptiveAvgPool1d.html
https://docs.pytorch.org/docs/stable/generated/torch.nn.AdaptiveAvgPool1d.html
https://pytorch-forecasting.readthedocs.io/en/v1.0.0/api/pytorch_forecasting.models.temporal_fusion_transformer.TemporalFusionTransformer.html
https://pytorch-forecasting.readthedocs.io/en/v1.0.0/api/pytorch_forecasting.models.temporal_fusion_transformer.TemporalFusionTransformer.html
https://pytorch-forecasting.readthedocs.io/en/v1.0.0/api/pytorch_forecasting.models.temporal_fusion_transformer.TemporalFusionTransformer.html
https://pytorch-forecasting.readthedocs.io/en/v1.0.0/api/pytorch_forecasting.data.timeseries.TimeSeriesDataSet.html
https://pytorch-forecasting.readthedocs.io/en/v1.0.0/api/pytorch_forecasting.data.timeseries.TimeSeriesDataSet.html
https://pytorch-forecasting.readthedocs.io/en/v1.0.0/api/pytorch_forecasting.data.timeseries.TimeSeriesDataSet.html
https://lightning.ai/docs/pytorch/stable/
https://lightning.ai/docs/pytorch/stable/
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html
https://seaborn.pydata.org/generated/seaborn.heatmap.html#seaborn.heatmap
https://seaborn.pydata.org/generated/seaborn.heatmap.html#seaborn.heatmap
https://shap.readthedocs.io/en/latest/
https://shap.readthedocs.io/en/latest/
https://doi.org/10.1109/ACCESS.2023.3269693

Bibliography

no. 4, pp. 3357–3374, Aug. 2022, issn: 1573-773X. doi: 10.1007/s11063-
022-10767-z. [Online]. Available: https://doi.org/10.1007/s11063-022-
10767-z.

99

https://doi.org/10.1007/s11063-022-10767-z
https://doi.org/10.1007/s11063-022-10767-z
https://doi.org/10.1007/s11063-022-10767-z
https://doi.org/10.1007/s11063-022-10767-z

Bibliography

100

A
Completing Data Visualization

This appendix contains additional figures and data analysis over the system.

A.1 Histograms of the Target Variable
Fig. A.1, A.2, and A.3 display the distribution of the target variable PRB utilization
for serial numbers 3, 4 and 5. The plots for serial 1 and 2 can be found in Fig. 3.1.

Figure A.1: Histogram of the target variable PRB utilization with and without sleep
mode for serial 3.

Figure A.2: Histogram of the target variable PRB utilization with and without sleep
mode for serial 4.

I

A. Completing Data Visualization

Figure A.3: Histogram of the target variable PRB utilization with and without sleep
mode for serial 5.

A.2 Heatmap Target and Mean Power Consump-
tion

Fig. A.4 shows the correlation of the tarvet variable with the mean Pin which shows
very similar patterns as previously shown an discussed in section 3.3.2. The lag t-96
reflexts a full 24h.

Figure A.4: Correlation between the target variable and the previous mean power
consumption lag values.

A.3 PRB Utilization: Weekly Patterns
The report showed heatmaps of serial 2, 4, and 5 in section 3.3.2. Fig. A.5 and A.6
show the other serial numbers’ heat maps.

II

A. Completing Data Visualization

Figure A.5: PRB utilization heatmap serial 1.

Figure A.6: PRB utilization heatmap serial 3.

A.4 PRB Utilization: Ten Day Curves
Section 3.3.2 showed patterns in PRB utilization for serial 2 and 4 in Fig. 3.6 and for
serial 5 in Fig. 3.8. Fig. A.7 and A.8 completes these plots by showing the pattern
of serial 1 and 3.

III

A. Completing Data Visualization

Figure A.7: PRB utilization pattern for serial 1.

Figure A.8: PRB utilization pattern for serial 3.

IV

B
Hyperparameter Search Space

This appendix specifies the hyperparameter space which was investigated for each
model. Table B.1 shows abbreviations used for those including scaler options. Any
cell marked with - indicate that the other task formulations have that parameter
but it is not available in that specific one.

Scaler Abbreviation
RobustScaler standard
MinMaxScaler minmax
StandardScaler robust

EncoderNormalizer encnorm

Table B.1: Scalers and their abbreviations.

B.1 Common Parameters
Several hyperparameters were shared across multiple models. Among these were the
choice of scaler and the lag in the data. Scalers were adopted from the Scikit-learn
library and the lag was set to be up to one day.

For the neural network models, additional common hyperparameters included the
optimizer, learning rate, and number of training epochs. All except the number of
epochs were included as tunable parameters within the Optuna optimization process.
Epochs was set to 125 across models as described in more details in section 3.7.

B.2 Statistical Models
The search spaces for the hyperparameters related to data preprocessing, which are
shared across most non-neural models, are presented in Table B.2. Where scaler is
the scaler used for the data and lag the amount of look back the model gets. The
hyperparameter search spaces specific to the different models are displayed in the
following tables.

V

B. Hyperparameter Search Space

Parameter Type Range
scaler Categorical standard, minmax, robust
lag_value Integer (1, 96)

Table B.2: Hyperparameter search space for data preprocessing

B.2.1 Random Forest Regressor
Table B.3 gives the optimal parameters found through optuna for RF. n_estimators
refers to the number of trees in the forest, max_depth to the depth that the trees
are allowed, min_samples_split is the minimum number of samples needed for a
split, and min_samples_leaf the minimum number of samples required to create a
node [75].

Parameter Type Range
n_estimators Integer (log-uniform) (50, 300)
max_depth Integer (log-uniform) (4, 20)
min_samples_split Integer (2, 10)
min_samples_leaf Integer (1, 10)

Table B.3: Hyperparameter search space for RF.

B.2.2 Extreme Gradient Boosting
Similarly to RF, n_estimators indicated the number of trees [29]. learning_rate
decreases the contribution of each tree by its rate, max_depth is as in RF the max
allowed depth of the trees, subsample is the percentage of samples used to train each
individual tree. Finally, colsample_bytree

Parameter Type Range
n_estimators Integer (log-uniform) (50, 300)
learning_rate Float (log-uniform) (0.01, 0.2)
max_depth Integer (3, 10)
subsample Float (0.7, 1.0)
colsample_bytree Float (0.7, 1.0)

Table B.4: Hyperparameter search space for XGB.

B.2.3 K-Nearest Neighbors
The unsupervised ML algorithm was given the search space as shown in Table B.5.
First, n_neighbors is the number of neighbors used to make a prediction, weights
decides how much each neighbors’ value contributes with [77]. leaf_size aids in
memory and speed of the algorithm, and p decides the function for distances.

VI

B. Hyperparameter Search Space

Parameter Type Range
n_neighbors Integer (2, 30)
weights Categorical uniform, distance
algorithm Categorical auto, kd_tree
leaf_size Integer (20, 50)
p Categorical 1, 2

Table B.5: Hyperparameter search space for KNC/R.

B.2.4 Support Vector Machine
The C parameter controls the strength of the regularization [76]. The kernel coef-
ficient is calculated according to the parameter gamma, scale, epsilon controls the
radius out from which there is no penalty added during training phase. Lastly, ker-
nel is used to calculate the similarity or difference between data points. Selecting
its function is crucial for creating a functional model.

Parameter Type Range
C Float (log-uniform) (0.01, 10)
gamma Categorical scale, auto, 0.001, 0.01, 0.1
epsilon Float (log-uniform) (0.001, 0.1)
kernel Categorical linear, rbf

Table B.6: Hyperparameter search space for SVC/R.

B.3 Neural Networks
The common search spaces are presented in Table. B.7. Scaler describes the way
data is transformed for the ML models, lag value defines the lag in the data and
hence the information back in time that the models get. Batch_size is the number of
samples used at a time during training, optimizer controls the change of the model
during training phase. The learning rate lr is closely connected to the optimizer
in that it chooses the amount of change that is done in every training loop. The
parameter grad_clip can be activated to decrease the change of exploding gradients.
hidden_size is the number of neurons in the hidden layers and use_sigmoid defines
if a last sigmoid activation function is used in the model.

VII

B. Hyperparameter Search Space

Parameter Type Range
scaler Categorical standard, minmax, robust
lag_value Integer (1, 96)
batch_size Categorical 16, 32, 64, 128
optimizer Categorical adam, rmsprop, sgd
lr Float (log-uniform) (1 × 10−5, 1 × 10−2)
grad_clip Boolean True, False
hidden_size Integer (step = 32) (32, 256)
use_sigmoid Boolean True, False

Table B.7: Hyperparameter search space for neural networks’ common hyperparam-
eters.

B.3.1 Feed Forward Neural Network
Num_layers is the number of hidden layers in the neural net, dropout_rate prevents
overfitting by setting a neuron’s output to 0 with the specified rate. The activa-
tion_func controls the activation function used and use_residuals controls weather
residuals are used.

Parameter Type Range
num_layers Integer (1, 4)
dropout_rate Float (step = 0.1) (0.0, 0.5)
activation_func Categorical relu, leaky_relu, elu, gelu
use_residuals Boolean True, False

Table B.8: Hyperparameter search space for FFNN

B.3.2 Convolutional Neural Network
Table B.9 shows the hyperparameter space for the hybrid CNN model. 1 and 2
in the end of the first 12 parameters indicates weather it is applied to the first or
second convolutional block. The channels created by the convolution is controlled
by branch_out_channels, kernel_size is the size of the kernel convolving over the
sequence. Kernel size is defined to never be larger than the input size, lag, as it is
impossible to convolve a larger kernel than the input.

The stride defines the jump after each convolution, padding parameter is the poten-
tial extra input added to the beginning and end of the sequence [69]. The parameter
ad_avg_pool controlls the size of the output of the AdaptiveAvgPool1d layer, which
takes a mean and creates an output of the specified size [71]. The max_pooling
parameter controls the kernel_size parameter of the MaxPool1d layer [70].

Static_hidden is the neuron size of the non sequential hidden layer and out_static
of its output layer. Conc_hidden is the neuron size of the concatenation later.
Out_to_concat controls the resize using a AdaptiveAvgPool1d layer of each indi-

VIII

B. Hyperparameter Search Space

vidual output before entering the concatenation layer. The activation parameters
control the activation function for each block as indicated by its suffix.

Parameter Type Range
branch_out_channels1 Integer (step=8) (8, 128)
branch_out_channels2 Integer (step=8) (8, 128)
kernel_size1 Integer (step=1) (1, min(10, lag))
kernel_size2 Integer (step=1) (1, min(10, lag))
stride1 Integer (step=1) (1, 7)
stride2 Integer (step=1) (1, 7)
padding_type1 Categorical same, valid
padding_type2 Categorical same, valid
ad_avg_pool1 Integer (step=8) (8, 128)
ad_avg_pool2 Integer (step=8) (8, 128)
max_pooling_kernel1 Integer (step=1) (1, 10)
max_pooling_kernel2 Integer (step=1) (1, 10)
static_hidden Integer (step=8) (8, 128)
out_static Integer (step=8) (8, 128)
conc_hidden Integer (step=8) (8, 128)
out_to_concat Integer (step=8) (8, 128)
activation_seq1 Categorical relu, leaky_relu, sigmoid, tanh
activation_seq2 Categorical relu, leaky_relu, sigmoid, tanh
activation_concat Categorical relu, leaky_relu, sigmoid, tanh
activation_static Categorical relu, leaky_relu, sigmoid, tanh

Table B.9: Hyperparameter search space for CNN

B.3.3 Long Short Memory
Table B.10 shows the individual tuning parameters for the hybrid LSTM model.
lstm_layers represents the number of hidden layers included in each LSTM module
in the model. The lstm_dropout parameter determines the dropout rate applied be-
tween hidden layers inside each LSTM module; it is only used if the number of hidden
layers is greater than one. The static_hidden_size_1 and static_hidden_size_2 pa-
rameters control the sizes of the first and second linear layers in the static branch
of the LSTM.

Parameter Type Range
lstm_layers Integer (1, 3)
lstm_dropout Float (step = 0.1) (0.0, 0.5
static_hidden_size_1 Integer (step = 16) (16, 128)
static_hidden_size_2 Integer (step = 8) (8, 64)

Table B.10: Hyperparameter search space for LSTM

IX

B. Hyperparameter Search Space

B.4 Temporal Fusion Transformer
The search space for the TFT is presented in Table B.12. Since the TFT was im-
plemented using the pytorch-forecasting library, the data was converted to a
PyTorch Forecasting time series dataset. While tuning the TFT model, the param-
eters for the time series dataset were tuned as well. Since the Pytorch Forecasting
library has different namings and configurations than regular neural networks imple-
mented in torch, the TFT did not share the same common parameters as the other
neural networks.

The search space for the dataset configuration is presented in Table B.11.
max_encoder_length and max_prediction_length define the maximum number of
time steps included in the encoder and decoder, respectively. The length of the
encoder is the TFTs equivalent of the lag_value. encoder_random_ratio controls
the fraction of max_encoder_length to select as the minimum encoder length. The
Boolean flag add_relative_time_idx controls whether to include relative time in-
dices for sequences. These indices range from encoder length to prediction length.
add_target_scales decides if target scales for static real features should be added,
and add_encoder_length if encoder length should be added to static real variables.
randomize_length enables random variation in encoder lengths per sample. The tar-
get_normalizer and scaler parameters define the normalization strategies applied to
the target and input features, respectively.

Parameter Type Range
max_encoder_length Integer (7, 60)
encoder_random_ratio Float (0.5, 1.0)
max_prediction_length Integer (3, 30)
add_relative_time_idx Boolean True, False
add_target_scales Boolean True, False
add_encoder_length Categorical “auto”, True, False
randomize_length Boolean True, False
target_normalizer Categorical auto, TorchNormalizer, GroupNormalizer

EncoderNormalizer
scaler Categorical StandardScaler, RobustScaler

EncoderNormalizer

Table B.11: Hyperparameter search space for the dataset configuration

The parameter setup for the TFT model is shown in Table B.12. The hidden_size
represents the number of neurons in each hidden layer. The lstm_layers parame-
ter determines the number of LSTM layers to include in the model. The dropout
rate is controlled by the dropout parameter. The attention_head_size represents the
number of attention heads to include, and hidden_continuous_size specifies the hid-
den size for the layers processing continuous variables. reduce_on_plateau_patience
controls the patience before reducing the learning rate by a factor of 10. The hy-
perparameter share_single_variable_networks determines whether the encoder and

X

B. Hyperparameter Search Space

decoder share the single-variable networks. causal_attention controls whether the
decoder is allowed to attend to future time steps. The learning_rate and batch_size
parameters were described in Section B.3.

Parameter Type Range
hidden_size Categorical 8, 16, 32, 64, 128, 256
lstm_layers Integer (1, 3)
dropout Float (0.05, 0.4)
attention_head_size Integer (1, 8)
hidden_continuous_size Categorical 4, 8, 16, 32
reduce_on_plateau_patience Integer (log-uniform) (5, 15)
share_single_variable_networks Boolean True, False
causal_attention Boolean True, False
learning_rate Float (log-uniform) (10−4, 10−2)
batch_size Categorical 32, 64, 128

Table B.12: Hyperparameter search space for TFT

XI

B. Hyperparameter Search Space

XII

C
Optimal Hyperparameters

This appendix shows the optimal hyperparameter space for each model.

Hyperparameter C R(F1) R(MSE)
params_lag_value 6 96 96

params_max_depth 19 17 15
params_n_estimators 165 92 155

params_min_samples_leaf 10 3 7
params_min_samples_split 3 9 4

Table C.1: Optimal hyperparameters RF.

Hyperparameter C R(F1) R(MSE)
params_lag_value 79 94 6

params_max_depth 10 6 4
params_n_estimators 199 254 88

params_subsample 0.77 0.97 0.98
params_colsample_bytree 0.72 0.78 0.83

params_learning_rate 0.019 0.057 0.12

Table C.2: Optimal hyperparameters XGB.

Hyperparameter C R(F1) R(MSE)
params_lag_value 1 1 1
params_algorithm auto auto kd_tree
params_leaf_size 34 23 35

params_n_neighbors 3 2 29
params_p 2 1 2

params_weights uniform distance distance
params_scaler standard robust robust

Table C.3: Optimal hyperparameters KNC/R.

XIII

C. Optimal Hyperparameters

Hyperparameter C R(F1) R(MSE)
params_lag_value 71 96 67

params_C 6.99 1.09 0.11
params_gamma auto scale scale
params_kernel rbf linear rbf
params_epsilon - 0.0097 0.0010
params_scaler robust minmax minmax

Table C.4: Optimal hyperparameters SVC/R.

Hyperparameter C R(F1) R(MSE)
params_lag_value 5 74 25

params_activation_func relu leaky_relu elu
params_dropout_rate 0.3 0.2 0.4
params_gradient_clip True True True
params_hidden_size 192 256 96

params_lr 0.000010 0.00027 0.00067
params_num_layers 3 1 1

params_use_residuals False True True
params_use_sigmoid False False False
params_batch_size 64 64 128

params_scaler robust robust robust

Table C.5: Optimal hyperparameters FFNN.

Hyperparameter C R(F1) R(MSE)
params_gradient_clip True False True
params_hidden_size 96 32 224
params_lag_value 45 8 79

params_lr 0.00013 0.009713 0.000033
params_lstm_dropout 0.0 0.5 0.1
params_lstm_layers 2 2 3

params_scaler standard robust standard
params_static_hidden_size_1 64 64 112
params_static_hidden_size_2 8 40 8

params_batch_size 64 64 64
params_optimzier adam adam adam

Table C.6: Optimal hyperparameters LSTM.

XIV

C. Optimal Hyperparameters

Hyperparameter C R(F1) R(MSE)
params_activation_concat tanh relu leaky_relu
params_activation_seq1 relu relu tanh
params_activation_seq2 leaky_relu tanh leaky_relu
params_activation_static relu sigmoid relu
params_ad_avg_pool1 40 64 40
params_ad_avg_pool2 64 8 96

params_branch_out_channels1 64 16 96
params_branch_out_channels2 64 96 32

params_conc_hidden 128 8 48
params_gradient_clip True True True
params_kernel_size1 10 7 3
params_kernel_size2 7 3 2

params_lag_value 85 96 95
params_max_pooling_kernel1 8 3 4
params_max_pooling_kernel2 2 10 6

params_out_static 88 16 112
params_out_to_concat 48 40 56
params_padding_type1 valid valid same
params_padding_type2 same same same
params_static_hidden 40 56 8

params_stride1 1 7 3
params_stride2 3 2 1

params_optimzier nan nan adam
params_lr 0.00045 0.00010 0.00050

params_scaler minmax standard robust

Table C.7: Optimal hyperparameters CNN.

XV

C. Optimal Hyperparameters

Hyperparameter C R(F1) R(MSE)
params_lag_value 49 26 43

params_add_encoder_length - - False
params_add_relative_time_idx False True False

params_add_target_scales - - True
params_attention_head_size 2.00 8 5

params_causal_attention False False True
params_dropout 0.25 0.15 0.08

params_encoder_random_ratio 0.75 0.53 0.90
params_epochs - - 170

params_hidden_continuous_size 32.00 4 32
params_hidden_size 32.00 128 32
params_lstm_layers 1.00 3 2

params_max_prediction_length 19.00 8 3
params_randomize_length True False True

params_reduce_on_plateau_patience 9.00 7 5
params_share_single_variable_networks False True True

params_target_normalizer - - encnorm
params_batch_size - - 128

params_learning_rate 0.00 0.01 0.00
params_scaler encnorm standard standard

Table C.8: Optimal hyperparameters TFT.

XVI

	List of Figures
	List of Tables
	Glossary
	Introduction
	Problem Statement
	Aim
	Limitations
	Thesis outline

	Theory
	Radio Functionality
	Electronics
	Energy Saving

	Machine Learning
	Time Series Data
	Timeseries data for ML

	Models
	Random Forest
	Extreme Gradient Boosting
	K-Nearest Neighbors
	Support Vector Machine
	Feedforward Neural Network
	Recurrent Neural Network
	Long Short Term Memory
	Convolutional Neural Network
	Temporal Fusion Transformer

	Optuna
	SHAP

	Methodology
	Solution Architecture
	Data Creation from an ML Perspective
	Data Collection and Sources
	Creating Lagged Features
	Forecasting Horizon and Target Construction
	Data Splitting
	Handling Missing Data

	Data Inspection
	Imbalance in Target
	Seasonality

	Feature Engineering
	Prediction Task Formulation
	Included Models and Their Optimization
	Model Selection
	Model Specifications

	Hyperparameter Tuning
	Training specifications
	Tuning specifications
	Hyperparameter Analysis

	Synthetic Data Generation
	Evaluation
	Metrics
	Threshold Tuning
	Benchmarking Models

	Explainability
	Libraries

	Results
	Hyperparameter Optimization
	Optimized Lag values
	Model-Specific Hyperparameters

	Results on All Radios
	Results on Individual Radios
	Generalizability Evaluation
	Exploring the Trade-Off Between Energy Savings and Underestimations
	SHAP-Based Interpretability of Top Models
	Model Energy Consumption

	Discussion
	RQ1: Viability of ML-based solutions
	RQ2: Classification vs. Regression
	RQ3: Model Selection
	Architectural Preferences
	Model Performance
	Performance on Synthetic Data

	RQ4: Explainability
	Reliability of Results

	Conclusion
	Bibliography
	Completing Data Visualization
	Histograms of the Target Variable
	Heatmap Target and Mean Power Consumption
	PRB Utilization: Weekly Patterns
	PRB Utilization: Ten Day Curves

	Hyperparameter Search Space
	Common Parameters
	Statistical Models
	Random Forest Regressor
	Extreme Gradient Boosting
	K-Nearest Neighbors
	Support Vector Machine

	Neural Networks
	Feed Forward Neural Network
	Convolutional Neural Network
	Long Short Memory

	Temporal Fusion Transformer

	Optimal Hyperparameters

