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Abstract—During the last decade, great advances has
been made in the field of computer vision [Man24].
The usage of convolutional neural networks has become
one of the most popular approaches to solving image
recognition tasks. However, when designing a CNN
there are many aspects to consider. In this report,
the performance of CNNs with different configurations
is compared when classifying images of trees. These
images come from the TRUNK12 dataset and contain
images of bark from 12 different tree types. First, a
base model was created which reached an accuracy of
66%. Different improvements were then added and an
ablation study was made for these improvements. The
best improvements found were using residual connec-
tions, normalize the data and use batch normalization.
The ablation study did not show strong improvements of
using PReLU instead of regular ReLU. It did not show
improvements of using early stopping either, but this
could be because of the regularization techniques used
or that the patience was too low. The highest received
accuracy was 79.8%.

I. METHOD

When designing the model, there were several aspects
to consider, along with different trade-offs. If the
model was too simple, it would fail to find patterns
in the data, but if it was too complex it could
become too specialized on the training data and fail
to generalize on unseen data. Additionally, the higher
the complexity, the more computationally demanding
the training. Therefore, the plan was to start simple
and increase the complexity of the model only if it
was deemed necessary.

The network architecture used for the base model was
a sequential Convolutional Neural Network (CNN)
with multiple convolutional and pooling layers, im-
plemented using PyTorch. ReLU was used as the
activation function, since it helps mitigate the dimin-
ishing and/or exploding gradient problem [Mad22].

With the intention of creating a more stable and
reliable model, normalization of the input data was
used. Each color channel was normalized indepen-
dently. Normalization helps the model find mean-
ingful patterns across various features and prevents
larger or higher-intensity features from dominating
lower-intensity ones. The normalization was done
using zero-centering and standard deviation 1. Zero-
centering is particularly beneficial when using ReLU
as the activation function, as it prevents gradient
saturation and improves training dynamics [Mad22].

The model was trained using a training loop, which
took a model, train loader, optimizer, criterion, and
number of epochs as arguments. In each epoch, the
loss and accuracy for the training data were calcu-
lated.

To improve the baseline model, several additions
were made. The first one was batch normalization,
which is a regularization technique [Sax24]. Like
other regularization techniques, batch normalization
prevents overfitting and makes the model converge
faster. Batch normalization layers standardize and
normalize output from the previous layer before it is
sent to the next layer. This is done over each batch.
Batch normalization also mitigates the diminishing or
exploding gradient problem, where gradients deeper
in the network either become really small or very
large.

Another improvement that was added was changing
the activation function. Instead of regular ReLU,
parameterized ReLU, PReLU, was used. PReLU ac-
counts for the dying ReLU problem, where negative
inputs result in inactive neurons [Ola23]. PReLU uses
a slope with a learnable parameter for negative inputs,
instead of setting the gradient to zero for negative
inputs as regular ReLU does. One downside to this
is that it increases complexity since the model gets
more learnable parameters. It was possible to have the
model learn one slope value for each input channel,
but because of computational complexity, only one
slope value over all input channels was used.

Additionally, early stopping was used. Early stop-
ping is another regularization technique that prevents
overfitting by having the training terminate when the
validation accuracy starts to decrease [Bro19]. With-
out this functionality, it can be difficult to know how
many epochs to use when training the model. To use
early stopping, a new training loop was implemented
which compares validation accuracy over epochs. If
the validation accuracy has not exceeded its highest
value over a specific number of epochs, called the
patience, it terminates. To use this new training loop,
the training data had to be split into validation and
training data. This was done using the torch function
random split with split size 80% for the training data
and 20% validation data.



The last improvement added was residual connec-
tions, moving away from the completely sequential
base model. Residual connections, or skip connec-
tions, let input skip a few layers and add it di-
rectly to the output from these skipped layers [T23].
This helps increase performance for deep models.
Although the model used in this report may not
have had a very large number of layers, it included
multiple convolutional layers, batch normalization,
activation functions, and a fully connected head.
Therefore, it could still benefit from the effects of
using residual connections. One benefit of residual
connections is that they hinder the vanishing and/or
exploding gradient problem. This was probably not a
very big concern for the improved model since both
normalization of the data, batch normalization, and
PReLU were used, which all mitigate this problem.
What was more important was that residual con-
nections help with the degradation problem, where
performance drops for deeper models. This is not
because of over- or underfitting, but because, for
example, useful information can get lost or weakened
further down in the network, making it harder for
deeper layers to learn relevant features.

An ablation study was made for the improved model
to see which, or if all, improvements were beneficial.

The evaluation of the models was done using accu-
racy as evaluation metric.

A. ID and OOD distributions

To separate images into in-distribution (ID) and
out-of-distribution (OOD) samples, feature extraction
was performed on the last convolutional layer in
the trained CNN. The distribution of these features
was plotted in a histogram to identify any clear
distinctions between the ID and OOD distributions.
Following this, a principal component analysis (PCA)
was conducted on the mean of the features over the
spatial dimensions to determine which features had
the highest variance. It would have been possible to
not calculate the mean over the spatial dimensions,
but this would have resulted in many more feature
values to compare. Therefore, it was decided to
first try to use the mean and see if it would give
adequate distributions. The aim was to find features
with the most spread-out distributions, potentially
showing distinct distributions for the two classes.
The PCA was performed using Sklearn’s pre-built
principal component analyzer.

Additionally, to mitigate the effect of outliers on
the variance, a second PCA was performed after
Winsorization had been applied to the data. This
was achieved using the scipy function winsorize.
Winsorize is a function that reduces the impact of
outliers by capping extreme values. The parameter

0.05 was used with the winsorize function, which
resulted in the data being capped at the 5th and 95th
percentiles. For example, the lowest 5% of the data
was set to the value at the 5th percentile, and the
highest 5% was set to the value at the 95th percentile.

II. EXPERIMENTAL EVALUATION

A. Baseline model

The layout for the base-line model is presented in
table ??.

Table I
CNN MODEL ARCHITECTURE

Layer Description

Block One Conv2d: Convolutional Layer
with 3 input channels, 32
output channels, and kernel
size of 5.
ReLU: ReLU Activation
Function.
MaxPool2d: Max Pooling
Layer with kernel size of 2.

Block Two Conv2d: Convolutional Layer
with 32 input channels, 64
output channels, and kernel
size of 5.
ReLU: ReLU Activation
Function.
MaxPool2d: Max Pooling
Layer with kernel size of 2.

Block Three Conv2d: Convolutional Layer
with 64 input channels, 128
output channels, and kernel
size of 3.
ReLU: ReLU Activation
Function.
MaxPool2d: Max Pooling
Layer with kernel size of 2.

Head Flatten: Flatten Layer.
Linear: Fully Connected
Layer with input size
128×2×2 and output size
512.
ReLU: ReLU Activation
Function.
Dropout: Dropout Layer with
probability 0.5.

Output Linear: Fully Connected
Layer with input size 512
and output size 12.

A learning rate of 0.001 and 10 epochs were used
to train the baseline model. The loss and training
accuracy for these epochs are presented in Table II.
While the accuracy on the training data provides an
indication of how well the model is learning local
patterns, it does not necessarily reflect the model’s
generalization ability. However, it is notable that
the training loss decreases steadily over the epochs,
showing useful weight adjustments.

It was difficult to decide the number of epochs
without validation data. Training for too many epochs



could lead to overfitting, but too few could lead
to underfitting. Therefore, 10 epochs were chosen.
The accuracy on the test set was 0.66, indicating
that the model learned some meaningful patterns and
performed significantly better than a random classifier
would for the 12 classes.

To potentially improve performance, additional
epochs could have been used, and their impact on
the test data could have been evaluated. However,
optimizing the model based on test data results is not
a valid approach, as it would lead to overfitting to the
test set. Therefore, this was not pursued.

Epoch Loss Accuracy
1/10 1.8606 0.3371
2/10 1.4704 0.4819
3/10 1.2863 0.5454
4/10 1.1205 0.6064
5/10 0.9966 0.6546
6/10 0.9218 0.6793
7/10 0.8389 0.7038
8/10 0.7617 0.7318
9/10 0.7036 0.7489

10/10 0.6551 0.7682
Table II

TRAINING RESULTS

B. Improvements

The improvements mentioned in the previous section
were added to the model and the new model is
presented in table III. A patience of 3 was used for
this model.

The training and validation accuracy for this model
is presented in figure 1. Both the validation and
training accuracy was trending upwards even when
the training terminated. A larger patience than 3 could
maybe have resulted in an even better model. This is
a balance since a higher patience could also result in
the model starting to overfit.

The improved model reached an accuracy of 78 %,
which is much higher than for the base-line model.
This indicates that the improvements were beneficial.
Which improvements were most useful is discussed
in the next section about the ablation study.

A confusion matrix for the predictions is shown
in figure 2. The confusion matrix shows that the
chestnut had the highest number of misclassification
and that oak tree overall was the most common label
to missclassify as. Beech had the lowest number of
misclassification.

Table III
RESNET MODEL ARCHITECTURE

Block One
Conv2d: Convolutional Layer with 3 input channels, 32 output
channels, and kernel size of 5.
BatchNorm2d: Batch Normalization over out channels.
PReLU: Parametric ReLU Activation Function.
Residual connection added to output
MaxPool2d: Max Pooling Layer with kernel size of 2.
Block Two
Conv2d: Convolutional Layer with 32 input channels, 64
output channels, and kernel size of 5.
BatchNorm2d: Batch Normalization over out channels.
PReLU: Parametric ReLU Activation Function.
Residual connection added to output
MaxPool2d: Max Pooling Layer with kernel size of 2.
Block Three
Conv2d: Convolutional Layer with 64 input channels, 128
output channels, and kernel size of 3.
BatchNorm2d: Batch Normalization over out channels.
PReLU: Parametric ReLU Activation Function.
Residual connection added to output
MaxPool2d: Max Pooling Layer with kernel size of 2.
Head
Flatten: Flatten Layer.
Linear: Fully Connected Layer with input size 3200 and output
size 512.
PReLU: Parametric ReLU Activation Function.
Dropout: Dropout Layer with probability 0.5.
Output
Linear: Fully Connected Layer with input size 512 and output
size 12.
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Figure 1. Training and Validation Accuracy improved model

C. Ablation study

1) Normalization removed: Even though the nor-
malization was used for the base model as well,
the improved model was run one time without the
normalization to see its effect.

Figure 3 shows some normalized and unnormalized
data as a comparison. The contrasts in the normalized
data are much clearer than in the unnormalized even
for smaller changes in pixel intensities.

The validation and training accuracy for this configu-
ration over epochs are presented in figure 4. The test



Figure 2. Confusion matrix improved model

Figure 3. Visualization of normalization

accuracy received for this model was 0.34. As can
be seen in the plot, the model starts to overfit very
quickly and performs much worse than the model
using normalization. This shows how beneficial us-
ing normalization is for this model with this data.
Without it, the model struggles to generalize and find
meaningful patterns in the data. The confusion matrix
for the model without normalization is presented
in figure 5 and it is very different from the one
where normalization is used. A very high number of

instances are classified as horse chestnut and oriental
plane.
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Figure 4. Training and Validation Accuracy without normalization

2) Batch Normalization removed: Secondly, the im-
proved model was run without using batch normal-
ization. The validation and training accuracy when
training this model is shown in figure 6. The model
ran for many more epochs before it terminated this
time since the validation and training accuracy kept
increasing. The model looks even better than with
batch normalization, but when used on the test data
the accuracy was only 72%, which is 4 percentage
points lower than for the model using batch normal-
ization. This indicates that the model becomes better
at generalizing when batch normalization is used.

The confusion matrix for the improved model without
batch normalization is presented in figure 7. It is
quite similar to the one when batch normalization
was used. However, one difference is that pine was
the most common tree to misclassify as. Otherwise,
chestnut still had the highest number of incorrect
classifications and beech the fewest.

3) PReLU removed: The third removed improve-
ment was PReLU. Instead, regular ReLU was used
as activation function. The validation and training
accuracy for this run is shown in figure 8. It looks
like the model is converging slower and the validation
accuracy starts to stabilize at 0.9, which is lower than
when PReLU was used. However, when evaluated on
the test data the model reached an accuracy of 77.9%
which is almost the same as the model using PReLU.
This indicates that the model did not suffer from
the dying ReLU problem. The additional complexity
introduced by using PReLU instead of regular ReLU
might therefore not be worth it.



Figure 5. Confusion matrix for improved model without data normalization
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Figure 6. Training and Validation Accuracy without batch nor-
malization

The confusion matrix when PReLU was not used
is shown in figure 9. It is somewhat similar to the
original one, with a few exceptions. For example,
beech is now the tree with the lowest number of
misclassifications. The misclassification overall are
more spread out in comparison with the original case
where a few trees had quite a lot of misclassification.
If a more generalized and stable model is desired, it
might be more beneficial to use regular ReLU instead
of PReLU in this case.

4) Early stopping removed: The next improvement
to remove was early stopping. The model was run on
20 epochs instead to see if it would overfit. The loss
and training accuracy are presented in table IV and
as can be seen, the loss steadily decreased over the
epochs. The test accuracy after the 20 epochs was
79.8%, which is higher than when early stopping
was used. This indicates that a too low patience
might have been used so that the improved model
was underfitted. But it could also be that the model
without early stopping was trained on more data since
no validation set was used. Additionally, since several
other regularization techniques were already used, the
model might be quite robust to overfitting even if it
is run for a high number of epochs.

The confusion matrix for the model without early
stopping is presented in figure 10. It is somewhat
similar to the original confusion matrix, having many
incorrect classifications of chestnut, where multiple
chestnut images were classified as oak trees, although
much fewer than for the original.



Figure 7. Confusion matrix for improved model without batch normalization

1 2 3 4 5 6 7 8 9 10
0.4

0.5

0.6

0.7

0.8

0.9

Epoch

A
cc

ur
ac

y

Training and Validation Accuracy

Training Accuracy
Validation Accuracy

Figure 8. Training and Validation Accuracy over Epochs without
PReLU

5) Residual connections removed: The last improve-
ment to remove was the residual connections. The
validation and training accuracy is presented in figure
11. As can be seen in the figure, the model only
ran for five epochs before it terminated because the
validation accuracy started to decrease. This indi-
cates that the residual connections are an important
improvement for this model. When evaluated on
the test data, an accuracy of 63% was received,

Epoch Loss Accuracy

1 1.6499 0.4516
2 0.9177 0.6787
3 0.7288 0.7425
4 0.5826 0.7938
5 0.5019 0.8224
6 0.4291 0.8490
7 0.3651 0.8712
8 0.3202 0.8853
9 0.2786 0.9060

10 0.2399 0.9147
11 0.2326 0.9188
12 0.1976 0.9308
13 0.1888 0.9367
14 0.1515 0.9461
15 0.1580 0.9456
16 0.1345 0.9529
17 0.1553 0.9488
18 0.1465 0.9520
19 0.1272 0.9579
20 0.1014 0.9672

Table IV
TRAINING LOSS AND ACCURACY WITHOUT EARLY STOPPING

which is much lower than when residual connections
where used. The model might therefore suffer from
degradation problem even if it is not very deep.
Additionally, residual connections help in preserv-



Figure 9. Confusion matrix for improved model without PReLU

ing important features and gradients during training,
which is beneficial given the small details and subtle
differences in the data.

The confusion matrix when residual connections were
removed is presented in figure 12. It differs a bit from
the original case, having many images incorrectly
classified as chestnut, especially images of oak trees.
On the other hand, for the original model many im-
ages of oak trees were classified as chestnut instead.
Additionally, oriental plane was wrongfully classified
as ginkgo biloda multiple times.

D. Visualize subset of images

Some example classifications are presented in figure
13. Two incorrect classifications show the common
mixup between oak tree and chestnut. These two tree
types seem to have similar features.

E. ID and OOD results

To be able to classify images as ID or OOD, the
features from the last convolutional layer in the CNN
were extracted. A histogram of the frequencies of
feature values for all features combined was created
and is presented in figure 14. This distribution does
not give a clear distinction of the two classes, which
might not be very surprising. This is because some
features might be characterized by having low values
for ID samples and high values for OOD or vice
versa. When all these values are combined, they can
outweigh each other so that there is no distinction
between ID and OOD samples. Therefore, a princi-
pal component analysis was made with the goal of
finding individual features characterized by having
distinct values for ID and OOD samples. The ten
features with the highest variance were features 68,
89, 100, 60, 127, 25, 11, 6, 90 and 81 in order.
The plot in figure 15 shows the result of the PC
analysis for the features in the same order they were



Figure 10. Confusion matrix for improved model without early stopping
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Figure 11. Training and Validation Accuracy without residual
connections

presented. The plot shows that feature 68 had the
highest variance.

The distributions for the found features are presented
in figure 16. Many histograms in figure 16 are not
obviously separated into two distinct distributions.
It does however look like feature 11, 90 and 81
could have two distributions since they all have
two separated peaks. These features were therefore
chosen and a threshold was decided by looking at
their histograms, threshold 0.5 for feature 11, 0.6 for
feature 90 and -0.1 for feature 81. The results for
these are presented in table V. Feature 81 had its
distribution the other way around, so the accuracy is
0.92 if the labels are switched. All features received
quite high accuracies and proved useful for separating
instances as belonging to ID and OOD.

Feature Threshold Accuracy

11 0.5 0.9115
90 0.6 0.9100
81 -0.1 0.0815

Table V
ACCURACY ID AND OOD FOR DIFFERENT FEATURES WITH

CORRESPONDING THRESHOLDS



Figure 12. Confusion matrix for improved model without residual connections

Figure 13. Example classifications for subset of images

A downside of using principal component analysis
is that it only compares isolated features. In many
cases, combining features and analyzing several fea-
tures together gives much better results. It would
be possible to manually add features together and

then do a principal component analysis on combined
features, but the number of features to consider would
increase very rapidly with this approach. In some
cases, it can be worth it but in this case, the separate
features already performed fairly well. To still get an



Figure 14. Histogram of distribution of all features

Figure 15. Features with the highest variance

idea of the benefits of combining features, feature 11
and 90 were combined since they had thresholds at
similar values. Using two features instead of just one
could make the classification more robust and less
dependent on local deviations.

The histogram of the distributions for the combined
feature is presented in figure 17 and a distinction
between the two distributions can be seen. By looking
at the histogram, threshold 1.5 was chosen for the
combined feature. Using this threshold generated an
accuracy of 97.6 %, which is much higher than for
the separate features.

A confusion matrix for the classifications is presented
in table VI, showing a balance in the number of ID
and OOD images that were misclassified, indicating
a good threshold. Some missclassifications are shown
in figure 18. It can be seen that many similar images
of OOD instances were misclassified. It might be that
the line in the middle of the coffee bean is mistaken
as a feature for bark which also often has a line with

a different contrast in the middle.

Predicted

Actual ID OOD

ID 975 25
OOD 23 977

Table VI
CONFUSION MATRIX



Figure 16. Histogram of feature value distributions for principal component features

Figure 17. Histogram of feature value distributions for combina-
tion of feature 11 and 90

As can be seen in figure 16, many of the distribu-
tions for the important features had very long tails.
Therefore, a new PCA was made after outliers had
been removed. The new most important features were

features 119, 48, 33, 19, 42, 90, 107, 91, 85 and 72.
Histograms of their distributions are shown in figure
19. Most of these histograms have clear distinctions
into two different distributions.



Figure 18. Missclassifications for feature 11 and 90 combined

The features that appeared to have distinct distribu-
tions were chosen and their thresholds were decided
by studying the histograms. These features, their
thresholds and accuracies are shown in table VII.
Feature 42 should have had the sign swaped for
deciding which label to give the image, but except
for this, all features have accuracies above 90. The
feature with the highest accuracy was feature 85.

Feature Threshold Accuracy

119 1.5 0.9095
33 1.0 0.9780
19 0.5 0.9795
42 -0.5 0.0315

107 1.0 0.9765
91 0.9 0.9640
85 1.0 0.9985
72 1.9 0.9755

Table VII
ACCURACY FOR FEATURES WITH CORRESPONDING

THRESHOLDS AFTER REMOVAL OF OUTLIERS

Feature 85 only misclassified three instances and
these are shown in figure 20. It is understandable that
these images are hard to classify, the first one would
be difficult for a human as well since it is very dark.



Figure 19. Distributions for most important features when outliers were removed

Figure 20. Miss classifications for feature 85

Once again, features 33, 85 and 107 were added
together since these had similar threshold values. The
new histogram for the combined feature is shown
in figure 21. Two separated distributions can clearly
be seen in this histogram. Using threshold 5 for this
feature gave an accuracy of 100%, showing that this
combined feature was perfect at separating the ID and
OOD samples in this data.
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