DAT341: Assignment 3

Johannes Berger
Personal number: 000917
johberge@chalmers. se

Abstract

This paper aims to create a well-
performing document classifier on opin-
ions on COVID-19 vaccinations. The clas-
sifier is created by investigating which
ML system has the highest performance
in classifying pro- and anti-covid vacci-
nation comments. In this paper, the lo-
gistic regression classifier gave the high-
est accuracy. The model got the highest
performance when features were extracted
using Tfidf (term frequency—inverse docu-
ment frequency). The model had an accu-
racy of 89.2 % but had a hard time classi-
fying comments containing negations such
as ’not”.

1 Introduction

This assignment and code aim to classify text data
as pro- or anti covid vaccinations. Document clas-
sification has a wide range of use cases, such as
email spam detection, and classifying opinions on
social media [1f]. Several papers have been written
specifically on the classification of positive or neg-
ative opinions. “Classifying Positive or Negative
Text Using Features Based on Opinion Words and
Term Frequency - Inverse Document Frequency”
by Sasiporn and Niwan [2] is one of them, stating
that the knowledge of opinions can be a power-
ful tool in domains such as politics and can aid in
marketing and business decision-making.

2 Problem Formulation

The subject of this paper can be broken down into
two subproblems. The first one regards transform-
ing the data. Since the data consists of text, this
text has to be encoded into a numerical represen-
tation before the classifiers are trained. This can
be done in different ways, and in this report, two
different approaches will be used and compared.

Cecilia Nyberg
Personal number: 990106
cecnyb@chalmers. se

Elin Stiebe
Personal number: 000210
elinsti@chalmers.se

The first one uses a TfidfVectorizer, and the sec-
ond one uses a sentence transformer.

The second subproblem is about the classifica-
tion of the encoded data. This paper aims to find
which model performs the best in the classifica-
tion of pro- and anti-vaccination comments. The
objective further is to report that model’s accuracy
and discuss some of the incorrect classifications
made and why the model had a hard time classify-
ing those comments.

3 Method

The data of this assignment was sourced from
the internet by students taking the course DAT341
during the third out of four reading periods. The
resulting data sets contained over 50000 com-
ments for the training data and 2000 for the test
set. Each instance was annotated by the students
and a majority of the training data instances had
two or more annotations each from different an-
notators. The data was labeled as 0 if it was con-
sidered to be against COVID vaccination and 1 if
it was supportive. A label of -1 was added if an
annotator thought a comment was not part of the
scope.

The data was preprocessed in several ways. The
data was cleaned by removing everything that was
not a letter, apostrophe, or a whitespace. Further,
instances with annotations of -1 in them were re-
moved since at least one annotator had deemed the
comment irrelevant. Instances were also removed
if any two annotators did not agree on its label.
Thus the models were not trained on any ambi-
gious data.

There are a large number of potential models
that could be used for classifying the comments.
9 different ones were chosen to primarily try out.
These were the following,

* DummyClassifier

* Gradient Boosting Classifier

* Random Forest Classifier

* Perceptron

* Decision Tree Classifier

* Logistic Regression

* Multinomial naive Bayes (NB)

* Linear Support Vector Machine (SVC)
* k-Nearest Neighbors Classifier (KNN)

The nine above were chosen since they have
varying complexity and do the classification in
vastly different ways. The dummy classifier is in-
cluded as a benchmark throughout the report. The
classifier has the accuracy of the majority class and
thus any well-performing algorithm should beat it.

First, all models were run with their default
hyperparameters. Second, their hyperparameters
were tuned to try and increase their accuracy. A
helper method training_ pipeline was cre-
ated to try and find more optimal hyperparame-
ters. The method also tuned Tfidf Vectorizer’s hy-
perparameters when it was used as encoder. The
method took four arguments (X, Y, model, pa-
rameters) where the parameter argument denotes a
dictionary of different hyperparameter selections.
The method returned the best-performing hyper-
parameters, model object, and test set accuracy
found by the RandomizedSearchCV. The random-
ized search reduces complexity, which is signif-
icantly higher for other popular options like grid
search [3].

When the data was encoded by a sentence
transformer, the chosen transformer was the “all-
mpnet-base-v2”. The MPNet model was chosen
because it has received a high score for its em-
bedding quality and is a general-purpose model
[4]. The model works by mapping sentences to
a 768-dimensional dense vector space [S[]. In op-
position to the Tfidf Vectorizer, the sentence trans-
former captures the semantic meaning of a com-
ment instead of focusing solely on which words
are used [[6]. Since the model was already pre-
trained and all-purposed, and because of computa-
tional constraints, the MPNet model was not fine-
tuned, it was only the classifiers’ hyperparameters
that were altered during the randomized search.

The evaluations of the models classifications re-
lied on the accuracy score metric and a confu-
sion matrix. And the learning algorithm with the
highest accuracy score was chosen as the opti-
mal one. The optimal model was analyzed further

with some of its incorrect classifications etc. More
about the chosen model in section[4.3]

4 Results and Discussion

In this section, each part of the method’s results
are described and discussed.

4.1 Default Parameters

Table [4.1] shows the test accuracy for each model
using its default hyperparameters. All perform
better than the DummyClassifier, meaning they
are at least better than the benchmark model. The
multinomial NB classifier was not run with the
MPNet model since it can not handle negative in-
put values.

Model Tfidf | MPNet
RandomForestClassifier 0.851 | 0.845
LogisticRegression 0.848 | 0.846
LinearSVC 0.848 | 0.863
MultinomialNB 0.835 -
Perceptron 0.796 | 0.783
GradientBoostingClassifier | 0.773 | 0.826
DecisionTreeClassifier 0.761 | 0.720
KNeighborsClassifier 0.740 | 0.869
DummyClassifier 0.500 | 0.500

Table 1: Table of all models and their accuracy
score using default hyperparameters.

4.2 Tweaked Parameters

All models were tuned with the help of
training pipeline method to try and in-
crease their accuracy further. As mentioned, the
method was utilized to include the hyperparame-
ters for the model and the Tfidf Vectorizer, giving
each model the highest accuracy. The MPNet pa-
rameters were kept constant and not fine-tuned due
to the computational effort.

4.3 Model with the Highest Accuracy

As can be seen in table [] the logistic regression
classifier used with the TfidfVectorizer had the
highest reported performance in accuracy score.
Its confusion matrix is shown in figure[I] The fig-
ure demonstrates the high accuracy of the model
and that the differences in sensitivity and speci-
ficity are small.

It is interesting to look at what the comments
it misclassified looked like. Below is one exam-
ple. The model did not accurately classify this text

Model Tfidf | MPNet
LogisticRegression 0.892 | 0.866
LinearSVC 0.885 | 0.867
MultinomialNB 0.873 -
KNeighborsClassifier 0.826 | 0.875
Perceptron 0.798 | 0.833
RandomForestClassifier 0.785 | 0.852
GradientBoostingClassifier | 0.783 | 0.869
DecisionTreeClassifier 0.695 | 0.718
DummyClassifier 0.500 | 0.500

Table 2: Table of accuracy score with finetuned
hyperparameters.

LogisticRegression - 900
Accuracy Score: 0.8916

905.000 115.000

anti-vaccination

- 600

- 500

Actual label

- 400
107.000 912.000

- 300

pro-vaccination
)

‘ -200
anti-vaccination

pro-vaccination
Predicted label

Figure 1: Confusion matrix for Logistic Regres-
sion.

when using the tfidfvectorizer. The reason is sim-
ple. Without the negation “not” this text would
be pro-vaccine. This is something that the model
misses when it uses tfidf for feature extraction.

Text: I’ve not had the vaccine and I feel great
Classified as: pro-vaccination
True Label: anti-vaccination

On the other hand, using the MPNet model,
the logistic regression classifier correctly classi-
fied the comment above. The miss-classifications
made with the MPNet model looked a bit different,
one example is presented below. Most misclassifi-
cations in this case were either done on very short
comments, like the one below, or long comments
with confusing and far-fetched parables.

Text: Poison
Classified as: pro-vaccination
True Label: anti-vaccination

The features that were given the highest weights
by the logistic regression classifier are presented
in table 3] These features make intuitive sense,
showing the classifier’s proficiency in identifying
words associated with both pro and anti-vaccine.

Rank Class 1 Feature Class 0 Feature
1 antivaxxers (6.137) never (6.477)
2 anti (6.093) poison (6.039)
3 available (4.600) not (5.833)
4 science (4.175) experimental (5.571)
5 today (4.107) forced (5.295)
6 vaxxers (3.980) rushed (4.078)
7 get (3.944) heart (3.885)
8 yes (3.830) money (3.885)
9 scientists (3.778) experiment (3.879)
10 hope (3.763) force (3.870)

Table 3: Top Features for Class 1 and Class 0 for
Logistic regression

4.4 Model with the Lowest Accuracy

The Decision tree classifier combined with the
Tfidfvectorizer performed the worst of the models.
It had a hard time identifying the pro-vaccine com-
ments. This fact becomes clear in figure [2] where
the false negatives are almost as high as the true
positives. It is a 50/50 chance of pro-vaccine com-
ments to get the right or wrong label.

DecisionTreeClassifier
Accuracy Score: 0.6949

800

874.000 146.000

600

anti-vaccination

-500

Actual label

- 400

pro-vaccination
|

- 300

i
pro-vaccination - 200

i
anti-vaccination
Predicted label

Figure 2: Confusion matrix for the Decision Tree
Classifier.

The top ten most important features were ex-
tracted and presented in table | to understand why
the decision tree performed badly. Many words

are similar to the ones found by the Logistic Re-
gression Classifier. Nevertheless, the decision tree
struggles to find meaningful patterns in the data
and might lack too much complexity for this task.

Additionally, the decision tree got a lower accu-
racy score after changing from the default hyper-
parameters. This suggests that the search space of
the hyperparameters was suboptimal. The search
space could have been changed or increased to ob-
tain higher results or at least match the results of
the default hyperparameters.

Word Importance
poison 0.027
today 0.018
Vaxxers 0.017
pandemic 0.014
heart 0.014
term 0.013
arm 0.012
taking 0.011
feel 0.011
experimental 0.010

Table 4: Top Features for the Decision Tree Clas-
sifier

4.5 Evaluating Annotator Precision

Badly annotated data would give suboptimal
grounds to train the model on. The model was
not trained on data where one of the annotations
was labeled as a -1 since these instances were con-
sidered irrelevant by one or more of the annota-
tors. Further, about 3.75 % of the annotations only
contained one annotation label. The models were
trained on these instances, though they are not in-
cluded in the evaluation of the annotator accuracy
since there is nothing to compare them to. The
method created to evaluate the accuracy only con-
sidered annotations as correctly annotated if all an-
notators agreed on their annotations. For example,
if 5 annotators made annotations and 4 gave it a
label of 1 but one person labeled it as a 0, then the
annotation was considered to be non-consensus.
This is a harsh way of evaluating the annotators’
performance. Yet the consensus reached 84.4 %,
a good score. Thus, the annotation consensus is
good.

4.6 Differences in feature representation

When evaluating the effect of the different text
encoding approaches, it is important to recognize

that the MPNet sentence transformer and Tfid-
fvectorizer work in different ways. While the Tfidf
concentrates on each word in a sentence [7]], the
MPNet instead captures the semantic meaning of
it [6]. A major drawback of the Tfidf is that it
does not account for ordering. The example er-
ror for the logistic regression classifier in section
M.3|shows that the Tfidf can misclassify sentences
where a negation is included. This is not the case
for the sentence transformer, but it can instead
miss patterns in specific word choices. When in-
specting the data for this task, it can be seen that
similar words are often used by people belong-
ing to the same class. The error example pre-
sented earlier clearly illustrates this: when focus-
ing on words often appearing in anti-vaccine com-
ments, the comment saying “poison” could eas-
ily be identified as anti, but when focusing on the
semantic meaning of the sentence, this comment
was mislabeled. Which text encoding approach is
most beneficial, therefore, depends on the data and
task. In the matter of classifying these comments,
both missing negations and ignoring specific word
choices can be disadvantageous. The results in-
dicate that recognizing specific words holds more
importance in this case since the use of the Tfid-
fVectorizer could reach a higher accuracy than the
sentence transformer.

The results further show that the two different
text encodings work differently well on different
classifiers. For the TfidfVectorizer, the logistic re-
gression classifier produced the highest accuracy
and for the MPNet model, it was the KNeigh-
bors classifier. For more simple classifiers, the in-
creased complexity of the data that follows from
using the MPNet might be disadvantageous since
it can make it harder for a simple model to gener-
alize. This goes the other way as well, more com-
plex models might perform worse on simple data
since that can make them more prone to overfit-
ting.

4.7 Limitations

Choices were made during many steps in this pa-
per. Each choice puts the result under limitations.
First the preprocessing of the data. All tokens
not being letters, apostrophes, or whitespaces were
removed. This could affect the results. For ex-
ample, when examining the comments, it seemed
that people who were against the vaccine appeared
more heated and used more exclamation marks

and emojis. Including these could potentially lead
to higher accuracy.

Second, about the search space of each model’s
hyperparameters. Decisions were made about
which parameters to include in the search space
and further what values each parameter was eval-
uated on. These search spaces could have been
investigated further to gain higher accuracies for
each model. Further, currently, the same search
space of hyperparameters was used for both tfidf
and MPNet though they could probably been
changed to fit each of the embedding’s vastly dif-
ferent behaviours.

Third, there is a gap in this paper related to the
accuracy of the MultinomialNB model for MP-
Net. It would not be run since MultinomialNB
cannot handle negative values. Thus there were
no results to report on this model. This could have
been solved by scaling the features and is some-
thing that could have been improved on.

5 Conclusion

The best-performing model to classify anti- and
pro-covid vaccination comments was the logis-
tic regression model, which had an accuracy of
89.2 % when working with features extracted with
the Tfidf. The model had difficulties correctly
classifying comments that had negating in them.

References

(1]

(2]

(3]

[4]

(5]

(6]

[7]

AltexSoft, Document
An overview, https
altexsoft . com/blog/document —
classification/, Accessed: February
15, 2024, Year the post was published, if
available.

classification:
/ /) www

S. Tongman and N. Wattanakitrungroj,
“Classifying positive or negative text using
features based on opinion words and term
frequency - inverse document frequency,” in
2018 5th International Conference on Ad-
vanced Informatics: Concept Theory and Ap-
plications (ICAICTA), 2018, pp. 159-164.
DOI: [10 . 1109 / ICAICTA . 2018 .
8541274.

scikit-learn. “Comparing randomized search
and grid search for hyperparameter esti-
mation.” Accessed on February 14, 2024.
(n.d), [Online]. Available: https : / /
scikit-learn.orqg/stable/auto_|

examples / model selection /

plot_randomized_search.html.

“Pretrained models — sentence-transformers
documentation.” (), [Online]. Available:
https://www. sbert . net /docs/
pretrained_models.html|(visited on
02/14/2024).

H. Face. “Mpnet model for sentence em-
beddings.” (), [Online]. Available: https :
/ / huggingface . co / sentence —
transformers/all —mpnet —base -
v2#fine-tuning.

H. Face. “Using sentence transformers at
hugging face.” Accessed: February 15, 2024.
(), [Online]. Available: |https / /
huggingface . co / docs / hub /
sentence - transformers # using —
sentence - transformers - at -
hugging-face.

M. Chaudhary. “Tf-idf vectorizer scikit-
learn.” 6 min read, Apr 24, 2020. Ac-
cessed: February 15, 2024. (2020), [On-
line]. Available: https : / / medium .
com / @cmukesh8688 / tf - idf -
vectorizer -
dbc0244a911a.

scikit - learn -

https://www.altexsoft.com/blog/document-classification/
https://www.altexsoft.com/blog/document-classification/
https://www.altexsoft.com/blog/document-classification/
https://doi.org/10.1109/ICAICTA.2018.8541274
https://doi.org/10.1109/ICAICTA.2018.8541274
https://scikit-learn.org/stable/auto_examples/model_selection/plot_randomized_search.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_randomized_search.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_randomized_search.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_randomized_search.html
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
https://huggingface.co/sentence-transformers/all-mpnet-base-v2#fine-tuning
https://huggingface.co/sentence-transformers/all-mpnet-base-v2#fine-tuning
https://huggingface.co/sentence-transformers/all-mpnet-base-v2#fine-tuning
https://huggingface.co/sentence-transformers/all-mpnet-base-v2#fine-tuning
https://huggingface.co/docs/hub/sentence-transformers#using-sentence-transformers-at-hugging-face
https://huggingface.co/docs/hub/sentence-transformers#using-sentence-transformers-at-hugging-face
https://huggingface.co/docs/hub/sentence-transformers#using-sentence-transformers-at-hugging-face
https://huggingface.co/docs/hub/sentence-transformers#using-sentence-transformers-at-hugging-face
https://huggingface.co/docs/hub/sentence-transformers#using-sentence-transformers-at-hugging-face
https://medium.com/@cmukesh8688/tf-idf-vectorizer-scikit-learn-dbc0244a911a
https://medium.com/@cmukesh8688/tf-idf-vectorizer-scikit-learn-dbc0244a911a
https://medium.com/@cmukesh8688/tf-idf-vectorizer-scikit-learn-dbc0244a911a
https://medium.com/@cmukesh8688/tf-idf-vectorizer-scikit-learn-dbc0244a911a

	Introduction
	Problem Formulation
	Method
	Results and Discussion
	Default Parameters
	Tweaked Parameters
	Model with the Highest Accuracy
	Model with the Lowest Accuracy
	Evaluating Annotator Precision
	Differences in feature representation
	Limitations

	Conclusion

